import KDBush from 'kdbush'; const defaultOptions = { minZoom: 0, // min zoom to generate clusters on maxZoom: 16, // max zoom level to cluster the points on minPoints: 2, // minimum points to form a cluster radius: 40, // cluster radius in pixels extent: 512, // tile extent (radius is calculated relative to it) nodeSize: 64, // size of the KD-tree leaf node, affects performance log: false, // whether to log timing info // whether to generate numeric ids for input features (in vector tiles) generateId: false, // a reduce function for calculating custom cluster properties reduce: null, // (accumulated, props) => { accumulated.sum += props.sum; } // properties to use for individual points when running the reducer map: props => props // props => ({sum: props.my_value}) }; const fround = Math.fround || (tmp => ((x) => { tmp[0] = +x; return tmp[0]; }))(new Float32Array(1)); const OFFSET_ZOOM = 2; const OFFSET_ID = 3; const OFFSET_PARENT = 4; const OFFSET_NUM = 5; const OFFSET_PROP = 6; export default class Supercluster { constructor(options) { this.options = Object.assign(Object.create(defaultOptions), options); this.trees = new Array(this.options.maxZoom + 1); this.stride = this.options.reduce ? 7 : 6; this.clusterProps = []; } load(points) { const {log, minZoom, maxZoom} = this.options; if (log) console.time('total time'); const timerId = `prepare ${ points.length } points`; if (log) console.time(timerId); this.points = points; // generate a cluster object for each point and index input points into a KD-tree const data = []; for (let i = 0; i < points.length; i++) { const p = points[i]; if (!p.geometry) continue; const [lng, lat] = p.geometry.coordinates; const x = fround(lngX(lng)); const y = fround(latY(lat)); // store internal point/cluster data in flat numeric arrays for performance data.push( x, y, // projected point coordinates Infinity, // the last zoom the point was processed at i, // index of the source feature in the original input array -1, // parent cluster id 1 // number of points in a cluster ); if (this.options.reduce) data.push(0); // noop } let tree = this.trees[maxZoom + 1] = this._createTree(data); if (log) console.timeEnd(timerId); // cluster points on max zoom, then cluster the results on previous zoom, etc.; // results in a cluster hierarchy across zoom levels for (let z = maxZoom; z >= minZoom; z--) { const now = +Date.now(); // create a new set of clusters for the zoom and index them with a KD-tree tree = this.trees[z] = this._createTree(this._cluster(tree, z)); if (log) console.log('z%d: %d clusters in %dms', z, tree.numItems, +Date.now() - now); } if (log) console.timeEnd('total time'); return this; } getClusters(bbox, zoom) { let minLng = ((bbox[0] + 180) % 360 + 360) % 360 - 180; const minLat = Math.max(-90, Math.min(90, bbox[1])); let maxLng = bbox[2] === 180 ? 180 : ((bbox[2] + 180) % 360 + 360) % 360 - 180; const maxLat = Math.max(-90, Math.min(90, bbox[3])); if (bbox[2] - bbox[0] >= 360) { minLng = -180; maxLng = 180; } else if (minLng > maxLng) { const easternHem = this.getClusters([minLng, minLat, 180, maxLat], zoom); const westernHem = this.getClusters([-180, minLat, maxLng, maxLat], zoom); return easternHem.concat(westernHem); } const tree = this.trees[this._limitZoom(zoom)]; const ids = tree.range(lngX(minLng), latY(maxLat), lngX(maxLng), latY(minLat)); const data = tree.data; const clusters = []; for (const id of ids) { const k = this.stride * id; clusters.push(data[k + OFFSET_NUM] > 1 ? getClusterJSON(data, k, this.clusterProps) : this.points[data[k + OFFSET_ID]]); } return clusters; } getChildren(clusterId) { const originId = this._getOriginId(clusterId); const originZoom = this._getOriginZoom(clusterId); const errorMsg = 'No cluster with the specified id.'; const tree = this.trees[originZoom]; if (!tree) throw new Error(errorMsg); const data = tree.data; if (originId * this.stride >= data.length) throw new Error(errorMsg); const r = this.options.radius / (this.options.extent * Math.pow(2, originZoom - 1)); const x = data[originId * this.stride]; const y = data[originId * this.stride + 1]; const ids = tree.within(x, y, r); const children = []; for (const id of ids) { const k = id * this.stride; if (data[k + OFFSET_PARENT] === clusterId) { children.push(data[k + OFFSET_NUM] > 1 ? getClusterJSON(data, k, this.clusterProps) : this.points[data[k + OFFSET_ID]]); } } if (children.length === 0) throw new Error(errorMsg); return children; } getLeaves(clusterId, limit, offset) { limit = limit || 10; offset = offset || 0; const leaves = []; this._appendLeaves(leaves, clusterId, limit, offset, 0); return leaves; } getTile(z, x, y) { const tree = this.trees[this._limitZoom(z)]; const z2 = Math.pow(2, z); const {extent, radius} = this.options; const p = radius / extent; const top = (y - p) / z2; const bottom = (y + 1 + p) / z2; const tile = { features: [] }; this._addTileFeatures( tree.range((x - p) / z2, top, (x + 1 + p) / z2, bottom), tree.data, x, y, z2, tile); if (x === 0) { this._addTileFeatures( tree.range(1 - p / z2, top, 1, bottom), tree.data, z2, y, z2, tile); } if (x === z2 - 1) { this._addTileFeatures( tree.range(0, top, p / z2, bottom), tree.data, -1, y, z2, tile); } return tile.features.length ? tile : null; } getClusterExpansionZoom(clusterId) { let expansionZoom = this._getOriginZoom(clusterId) - 1; while (expansionZoom <= this.options.maxZoom) { const children = this.getChildren(clusterId); expansionZoom++; if (children.length !== 1) break; clusterId = children[0].properties.cluster_id; } return expansionZoom; } _appendLeaves(result, clusterId, limit, offset, skipped) { const children = this.getChildren(clusterId); for (const child of children) { const props = child.properties; if (props && props.cluster) { if (skipped + props.point_count <= offset) { // skip the whole cluster skipped += props.point_count; } else { // enter the cluster skipped = this._appendLeaves(result, props.cluster_id, limit, offset, skipped); // exit the cluster } } else if (skipped < offset) { // skip a single point skipped++; } else { // add a single point result.push(child); } if (result.length === limit) break; } return skipped; } _createTree(data) { const tree = new KDBush(data.length / this.stride | 0, this.options.nodeSize, Float32Array); for (let i = 0; i < data.length; i += this.stride) tree.add(data[i], data[i + 1]); tree.finish(); tree.data = data; return tree; } _addTileFeatures(ids, data, x, y, z2, tile) { for (const i of ids) { const k = i * this.stride; const isCluster = data[k + OFFSET_NUM] > 1; let tags, px, py; if (isCluster) { tags = getClusterProperties(data, k, this.clusterProps); px = data[k]; py = data[k + 1]; } else { const p = this.points[data[k + OFFSET_ID]]; tags = p.properties; const [lng, lat] = p.geometry.coordinates; px = lngX(lng); py = latY(lat); } const f = { type: 1, geometry: [[ Math.round(this.options.extent * (px * z2 - x)), Math.round(this.options.extent * (py * z2 - y)) ]], tags }; // assign id let id; if (isCluster || this.options.generateId) { // optionally generate id for points id = data[k + OFFSET_ID]; } else { // keep id if already assigned id = this.points[data[k + OFFSET_ID]].id; } if (id !== undefined) f.id = id; tile.features.push(f); } } _limitZoom(z) { return Math.max(this.options.minZoom, Math.min(Math.floor(+z), this.options.maxZoom + 1)); } _cluster(tree, zoom) { const {radius, extent, reduce, minPoints} = this.options; const r = radius / (extent * Math.pow(2, zoom)); const data = tree.data; const nextData = []; const stride = this.stride; // loop through each point for (let i = 0; i < data.length; i += stride) { // if we've already visited the point at this zoom level, skip it if (data[i + OFFSET_ZOOM] <= zoom) continue; data[i + OFFSET_ZOOM] = zoom; // find all nearby points const x = data[i]; const y = data[i + 1]; const neighborIds = tree.within(data[i], data[i + 1], r); const numPointsOrigin = data[i + OFFSET_NUM]; let numPoints = numPointsOrigin; // count the number of points in a potential cluster for (const neighborId of neighborIds) { const k = neighborId * stride; // filter out neighbors that are already processed if (data[k + OFFSET_ZOOM] > zoom) numPoints += data[k + OFFSET_NUM]; } // if there were neighbors to merge, and there are enough points to form a cluster if (numPoints > numPointsOrigin && numPoints >= minPoints) { let wx = x * numPointsOrigin; let wy = y * numPointsOrigin; let clusterProperties; let clusterPropIndex = -1; // encode both zoom and point index on which the cluster originated -- offset by total length of features const id = ((i / stride | 0) << 5) + (zoom + 1) + this.points.length; for (const neighborId of neighborIds) { const k = neighborId * stride; if (data[k + OFFSET_ZOOM] <= zoom) continue; data[k + OFFSET_ZOOM] = zoom; // save the zoom (so it doesn't get processed twice) const numPoints2 = data[k + OFFSET_NUM]; wx += data[k] * numPoints2; // accumulate coordinates for calculating weighted center wy += data[k + 1] * numPoints2; data[k + OFFSET_PARENT] = id; if (reduce) { if (!clusterProperties) { clusterProperties = this._map(data, i, true); clusterPropIndex = this.clusterProps.length; this.clusterProps.push(clusterProperties); } reduce(clusterProperties, this._map(data, k)); } } data[i + OFFSET_PARENT] = id; nextData.push(wx / numPoints, wy / numPoints, Infinity, id, -1, numPoints); if (reduce) nextData.push(clusterPropIndex); } else { // left points as unclustered for (let j = 0; j < stride; j++) nextData.push(data[i + j]); if (numPoints > 1) { for (const neighborId of neighborIds) { const k = neighborId * stride; if (data[k + OFFSET_ZOOM] <= zoom) continue; data[k + OFFSET_ZOOM] = zoom; for (let j = 0; j < stride; j++) nextData.push(data[k + j]); } } } } return nextData; } // get index of the point from which the cluster originated _getOriginId(clusterId) { return (clusterId - this.points.length) >> 5; } // get zoom of the point from which the cluster originated _getOriginZoom(clusterId) { return (clusterId - this.points.length) % 32; } _map(data, i, clone) { if (data[i + OFFSET_NUM] > 1) { const props = this.clusterProps[data[i + OFFSET_PROP]]; return clone ? Object.assign({}, props) : props; } const original = this.points[data[i + OFFSET_ID]].properties; const result = this.options.map(original); return clone && result === original ? Object.assign({}, result) : result; } } function getClusterJSON(data, i, clusterProps) { return { type: 'Feature', id: data[i + OFFSET_ID], properties: getClusterProperties(data, i, clusterProps), geometry: { type: 'Point', coordinates: [xLng(data[i]), yLat(data[i + 1])] } }; } function getClusterProperties(data, i, clusterProps) { const count = data[i + OFFSET_NUM]; const abbrev = count >= 10000 ? `${Math.round(count / 1000) }k` : count >= 1000 ? `${Math.round(count / 100) / 10 }k` : count; const propIndex = data[i + OFFSET_PROP]; const properties = propIndex === -1 ? {} : Object.assign({}, clusterProps[propIndex]); return Object.assign(properties, { cluster: true, cluster_id: data[i + OFFSET_ID], point_count: count, point_count_abbreviated: abbrev }); } // longitude/latitude to spherical mercator in [0..1] range function lngX(lng) { return lng / 360 + 0.5; } function latY(lat) { const sin = Math.sin(lat * Math.PI / 180); const y = (0.5 - 0.25 * Math.log((1 + sin) / (1 - sin)) / Math.PI); return y < 0 ? 0 : y > 1 ? 1 : y; } // spherical mercator to longitude/latitude function xLng(x) { return (x - 0.5) * 360; } function yLat(y) { const y2 = (180 - y * 360) * Math.PI / 180; return 360 * Math.atan(Math.exp(y2)) / Math.PI - 90; }