import {path} from "d3-path"; import constant from "./constant.js"; import {abs, acos, asin, atan2, cos, epsilon, halfPi, max, min, pi, sin, sqrt, tau} from "./math.js"; function arcInnerRadius(d) { return d.innerRadius; } function arcOuterRadius(d) { return d.outerRadius; } function arcStartAngle(d) { return d.startAngle; } function arcEndAngle(d) { return d.endAngle; } function arcPadAngle(d) { return d && d.padAngle; // Note: optional! } function intersect(x0, y0, x1, y1, x2, y2, x3, y3) { var x10 = x1 - x0, y10 = y1 - y0, x32 = x3 - x2, y32 = y3 - y2, t = y32 * x10 - x32 * y10; if (t * t < epsilon) return; t = (x32 * (y0 - y2) - y32 * (x0 - x2)) / t; return [x0 + t * x10, y0 + t * y10]; } // Compute perpendicular offset line of length rc. // http://mathworld.wolfram.com/Circle-LineIntersection.html function cornerTangents(x0, y0, x1, y1, r1, rc, cw) { var x01 = x0 - x1, y01 = y0 - y1, lo = (cw ? rc : -rc) / sqrt(x01 * x01 + y01 * y01), ox = lo * y01, oy = -lo * x01, x11 = x0 + ox, y11 = y0 + oy, x10 = x1 + ox, y10 = y1 + oy, x00 = (x11 + x10) / 2, y00 = (y11 + y10) / 2, dx = x10 - x11, dy = y10 - y11, d2 = dx * dx + dy * dy, r = r1 - rc, D = x11 * y10 - x10 * y11, d = (dy < 0 ? -1 : 1) * sqrt(max(0, r * r * d2 - D * D)), cx0 = (D * dy - dx * d) / d2, cy0 = (-D * dx - dy * d) / d2, cx1 = (D * dy + dx * d) / d2, cy1 = (-D * dx + dy * d) / d2, dx0 = cx0 - x00, dy0 = cy0 - y00, dx1 = cx1 - x00, dy1 = cy1 - y00; // Pick the closer of the two intersection points. // TODO Is there a faster way to determine which intersection to use? if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) cx0 = cx1, cy0 = cy1; return { cx: cx0, cy: cy0, x01: -ox, y01: -oy, x11: cx0 * (r1 / r - 1), y11: cy0 * (r1 / r - 1) }; } export default function() { var innerRadius = arcInnerRadius, outerRadius = arcOuterRadius, cornerRadius = constant(0), padRadius = null, startAngle = arcStartAngle, endAngle = arcEndAngle, padAngle = arcPadAngle, context = null; function arc() { var buffer, r, r0 = +innerRadius.apply(this, arguments), r1 = +outerRadius.apply(this, arguments), a0 = startAngle.apply(this, arguments) - halfPi, a1 = endAngle.apply(this, arguments) - halfPi, da = abs(a1 - a0), cw = a1 > a0; if (!context) context = buffer = path(); // Ensure that the outer radius is always larger than the inner radius. if (r1 < r0) r = r1, r1 = r0, r0 = r; // Is it a point? if (!(r1 > epsilon)) context.moveTo(0, 0); // Or is it a circle or annulus? else if (da > tau - epsilon) { context.moveTo(r1 * cos(a0), r1 * sin(a0)); context.arc(0, 0, r1, a0, a1, !cw); if (r0 > epsilon) { context.moveTo(r0 * cos(a1), r0 * sin(a1)); context.arc(0, 0, r0, a1, a0, cw); } } // Or is it a circular or annular sector? else { var a01 = a0, a11 = a1, a00 = a0, a10 = a1, da0 = da, da1 = da, ap = padAngle.apply(this, arguments) / 2, rp = (ap > epsilon) && (padRadius ? +padRadius.apply(this, arguments) : sqrt(r0 * r0 + r1 * r1)), rc = min(abs(r1 - r0) / 2, +cornerRadius.apply(this, arguments)), rc0 = rc, rc1 = rc, t0, t1; // Apply padding? Note that since r1 ≥ r0, da1 ≥ da0. if (rp > epsilon) { var p0 = asin(rp / r0 * sin(ap)), p1 = asin(rp / r1 * sin(ap)); if ((da0 -= p0 * 2) > epsilon) p0 *= (cw ? 1 : -1), a00 += p0, a10 -= p0; else da0 = 0, a00 = a10 = (a0 + a1) / 2; if ((da1 -= p1 * 2) > epsilon) p1 *= (cw ? 1 : -1), a01 += p1, a11 -= p1; else da1 = 0, a01 = a11 = (a0 + a1) / 2; } var x01 = r1 * cos(a01), y01 = r1 * sin(a01), x10 = r0 * cos(a10), y10 = r0 * sin(a10); // Apply rounded corners? if (rc > epsilon) { var x11 = r1 * cos(a11), y11 = r1 * sin(a11), x00 = r0 * cos(a00), y00 = r0 * sin(a00), oc; // Restrict the corner radius according to the sector angle. if (da < pi && (oc = intersect(x01, y01, x00, y00, x11, y11, x10, y10))) { var ax = x01 - oc[0], ay = y01 - oc[1], bx = x11 - oc[0], by = y11 - oc[1], kc = 1 / sin(acos((ax * bx + ay * by) / (sqrt(ax * ax + ay * ay) * sqrt(bx * bx + by * by))) / 2), lc = sqrt(oc[0] * oc[0] + oc[1] * oc[1]); rc0 = min(rc, (r0 - lc) / (kc - 1)); rc1 = min(rc, (r1 - lc) / (kc + 1)); } } // Is the sector collapsed to a line? if (!(da1 > epsilon)) context.moveTo(x01, y01); // Does the sector’s outer ring have rounded corners? else if (rc1 > epsilon) { t0 = cornerTangents(x00, y00, x01, y01, r1, rc1, cw); t1 = cornerTangents(x11, y11, x10, y10, r1, rc1, cw); context.moveTo(t0.cx + t0.x01, t0.cy + t0.y01); // Have the corners merged? if (rc1 < rc) context.arc(t0.cx, t0.cy, rc1, atan2(t0.y01, t0.x01), atan2(t1.y01, t1.x01), !cw); // Otherwise, draw the two corners and the ring. else { context.arc(t0.cx, t0.cy, rc1, atan2(t0.y01, t0.x01), atan2(t0.y11, t0.x11), !cw); context.arc(0, 0, r1, atan2(t0.cy + t0.y11, t0.cx + t0.x11), atan2(t1.cy + t1.y11, t1.cx + t1.x11), !cw); context.arc(t1.cx, t1.cy, rc1, atan2(t1.y11, t1.x11), atan2(t1.y01, t1.x01), !cw); } } // Or is the outer ring just a circular arc? else context.moveTo(x01, y01), context.arc(0, 0, r1, a01, a11, !cw); // Is there no inner ring, and it’s a circular sector? // Or perhaps it’s an annular sector collapsed due to padding? if (!(r0 > epsilon) || !(da0 > epsilon)) context.lineTo(x10, y10); // Does the sector’s inner ring (or point) have rounded corners? else if (rc0 > epsilon) { t0 = cornerTangents(x10, y10, x11, y11, r0, -rc0, cw); t1 = cornerTangents(x01, y01, x00, y00, r0, -rc0, cw); context.lineTo(t0.cx + t0.x01, t0.cy + t0.y01); // Have the corners merged? if (rc0 < rc) context.arc(t0.cx, t0.cy, rc0, atan2(t0.y01, t0.x01), atan2(t1.y01, t1.x01), !cw); // Otherwise, draw the two corners and the ring. else { context.arc(t0.cx, t0.cy, rc0, atan2(t0.y01, t0.x01), atan2(t0.y11, t0.x11), !cw); context.arc(0, 0, r0, atan2(t0.cy + t0.y11, t0.cx + t0.x11), atan2(t1.cy + t1.y11, t1.cx + t1.x11), cw); context.arc(t1.cx, t1.cy, rc0, atan2(t1.y11, t1.x11), atan2(t1.y01, t1.x01), !cw); } } // Or is the inner ring just a circular arc? else context.arc(0, 0, r0, a10, a00, cw); } context.closePath(); if (buffer) return context = null, buffer + "" || null; } arc.centroid = function() { var r = (+innerRadius.apply(this, arguments) + +outerRadius.apply(this, arguments)) / 2, a = (+startAngle.apply(this, arguments) + +endAngle.apply(this, arguments)) / 2 - pi / 2; return [cos(a) * r, sin(a) * r]; }; arc.innerRadius = function(_) { return arguments.length ? (innerRadius = typeof _ === "function" ? _ : constant(+_), arc) : innerRadius; }; arc.outerRadius = function(_) { return arguments.length ? (outerRadius = typeof _ === "function" ? _ : constant(+_), arc) : outerRadius; }; arc.cornerRadius = function(_) { return arguments.length ? (cornerRadius = typeof _ === "function" ? _ : constant(+_), arc) : cornerRadius; }; arc.padRadius = function(_) { return arguments.length ? (padRadius = _ == null ? null : typeof _ === "function" ? _ : constant(+_), arc) : padRadius; }; arc.startAngle = function(_) { return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant(+_), arc) : startAngle; }; arc.endAngle = function(_) { return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant(+_), arc) : endAngle; }; arc.padAngle = function(_) { return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant(+_), arc) : padAngle; }; arc.context = function(_) { return arguments.length ? ((context = _ == null ? null : _), arc) : context; }; return arc; }