import * as glMatrix from "./common.js"; import * as quat from "./quat.js"; import * as mat4 from "./mat4.js"; /** * Dual Quaternion
* Format: [real, dual]
* Quaternion format: XYZW
* Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.
* @module quat2 */ /** * Creates a new identity dual quat * * @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation] */ export function create() { var dq = new glMatrix.ARRAY_TYPE(8); if (glMatrix.ARRAY_TYPE != Float32Array) { dq[0] = 0; dq[1] = 0; dq[2] = 0; dq[4] = 0; dq[5] = 0; dq[6] = 0; dq[7] = 0; } dq[3] = 1; return dq; } /** * Creates a new quat initialized with values from an existing quaternion * * @param {ReadonlyQuat2} a dual quaternion to clone * @returns {quat2} new dual quaternion * @function */ export function clone(a) { var dq = new glMatrix.ARRAY_TYPE(8); dq[0] = a[0]; dq[1] = a[1]; dq[2] = a[2]; dq[3] = a[3]; dq[4] = a[4]; dq[5] = a[5]; dq[6] = a[6]; dq[7] = a[7]; return dq; } /** * Creates a new dual quat initialized with the given values * * @param {Number} x1 X component * @param {Number} y1 Y component * @param {Number} z1 Z component * @param {Number} w1 W component * @param {Number} x2 X component * @param {Number} y2 Y component * @param {Number} z2 Z component * @param {Number} w2 W component * @returns {quat2} new dual quaternion * @function */ export function fromValues(x1, y1, z1, w1, x2, y2, z2, w2) { var dq = new glMatrix.ARRAY_TYPE(8); dq[0] = x1; dq[1] = y1; dq[2] = z1; dq[3] = w1; dq[4] = x2; dq[5] = y2; dq[6] = z2; dq[7] = w2; return dq; } /** * Creates a new dual quat from the given values (quat and translation) * * @param {Number} x1 X component * @param {Number} y1 Y component * @param {Number} z1 Z component * @param {Number} w1 W component * @param {Number} x2 X component (translation) * @param {Number} y2 Y component (translation) * @param {Number} z2 Z component (translation) * @returns {quat2} new dual quaternion * @function */ export function fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) { var dq = new glMatrix.ARRAY_TYPE(8); dq[0] = x1; dq[1] = y1; dq[2] = z1; dq[3] = w1; var ax = x2 * 0.5, ay = y2 * 0.5, az = z2 * 0.5; dq[4] = ax * w1 + ay * z1 - az * y1; dq[5] = ay * w1 + az * x1 - ax * z1; dq[6] = az * w1 + ax * y1 - ay * x1; dq[7] = -ax * x1 - ay * y1 - az * z1; return dq; } /** * Creates a dual quat from a quaternion and a translation * * @param {ReadonlyQuat2} dual quaternion receiving operation result * @param {ReadonlyQuat} q a normalized quaternion * @param {ReadonlyVec3} t tranlation vector * @returns {quat2} dual quaternion receiving operation result * @function */ export function fromRotationTranslation(out, q, t) { var ax = t[0] * 0.5, ay = t[1] * 0.5, az = t[2] * 0.5, bx = q[0], by = q[1], bz = q[2], bw = q[3]; out[0] = bx; out[1] = by; out[2] = bz; out[3] = bw; out[4] = ax * bw + ay * bz - az * by; out[5] = ay * bw + az * bx - ax * bz; out[6] = az * bw + ax * by - ay * bx; out[7] = -ax * bx - ay * by - az * bz; return out; } /** * Creates a dual quat from a translation * * @param {ReadonlyQuat2} dual quaternion receiving operation result * @param {ReadonlyVec3} t translation vector * @returns {quat2} dual quaternion receiving operation result * @function */ export function fromTranslation(out, t) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = t[0] * 0.5; out[5] = t[1] * 0.5; out[6] = t[2] * 0.5; out[7] = 0; return out; } /** * Creates a dual quat from a quaternion * * @param {ReadonlyQuat2} dual quaternion receiving operation result * @param {ReadonlyQuat} q the quaternion * @returns {quat2} dual quaternion receiving operation result * @function */ export function fromRotation(out, q) { out[0] = q[0]; out[1] = q[1]; out[2] = q[2]; out[3] = q[3]; out[4] = 0; out[5] = 0; out[6] = 0; out[7] = 0; return out; } /** * Creates a new dual quat from a matrix (4x4) * * @param {quat2} out the dual quaternion * @param {ReadonlyMat4} a the matrix * @returns {quat2} dual quat receiving operation result * @function */ export function fromMat4(out, a) { //TODO Optimize this var outer = quat.create(); mat4.getRotation(outer, a); var t = new glMatrix.ARRAY_TYPE(3); mat4.getTranslation(t, a); fromRotationTranslation(out, outer, t); return out; } /** * Copy the values from one dual quat to another * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the source dual quaternion * @returns {quat2} out * @function */ export function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; return out; } /** * Set a dual quat to the identity dual quaternion * * @param {quat2} out the receiving quaternion * @returns {quat2} out */ export function identity(out) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = 0; out[5] = 0; out[6] = 0; out[7] = 0; return out; } /** * Set the components of a dual quat to the given values * * @param {quat2} out the receiving quaternion * @param {Number} x1 X component * @param {Number} y1 Y component * @param {Number} z1 Z component * @param {Number} w1 W component * @param {Number} x2 X component * @param {Number} y2 Y component * @param {Number} z2 Z component * @param {Number} w2 W component * @returns {quat2} out * @function */ export function set(out, x1, y1, z1, w1, x2, y2, z2, w2) { out[0] = x1; out[1] = y1; out[2] = z1; out[3] = w1; out[4] = x2; out[5] = y2; out[6] = z2; out[7] = w2; return out; } /** * Gets the real part of a dual quat * @param {quat} out real part * @param {ReadonlyQuat2} a Dual Quaternion * @return {quat} real part */ export var getReal = quat.copy; /** * Gets the dual part of a dual quat * @param {quat} out dual part * @param {ReadonlyQuat2} a Dual Quaternion * @return {quat} dual part */ export function getDual(out, a) { out[0] = a[4]; out[1] = a[5]; out[2] = a[6]; out[3] = a[7]; return out; } /** * Set the real component of a dual quat to the given quaternion * * @param {quat2} out the receiving quaternion * @param {ReadonlyQuat} q a quaternion representing the real part * @returns {quat2} out * @function */ export var setReal = quat.copy; /** * Set the dual component of a dual quat to the given quaternion * * @param {quat2} out the receiving quaternion * @param {ReadonlyQuat} q a quaternion representing the dual part * @returns {quat2} out * @function */ export function setDual(out, q) { out[4] = q[0]; out[5] = q[1]; out[6] = q[2]; out[7] = q[3]; return out; } /** * Gets the translation of a normalized dual quat * @param {vec3} out translation * @param {ReadonlyQuat2} a Dual Quaternion to be decomposed * @return {vec3} translation */ export function getTranslation(out, a) { var ax = a[4], ay = a[5], az = a[6], aw = a[7], bx = -a[0], by = -a[1], bz = -a[2], bw = a[3]; out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2; out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2; out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2; return out; } /** * Translates a dual quat by the given vector * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the dual quaternion to translate * @param {ReadonlyVec3} v vector to translate by * @returns {quat2} out */ export function translate(out, a, v) { var ax1 = a[0], ay1 = a[1], az1 = a[2], aw1 = a[3], bx1 = v[0] * 0.5, by1 = v[1] * 0.5, bz1 = v[2] * 0.5, ax2 = a[4], ay2 = a[5], az2 = a[6], aw2 = a[7]; out[0] = ax1; out[1] = ay1; out[2] = az1; out[3] = aw1; out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2; out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2; out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2; out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2; return out; } /** * Rotates a dual quat around the X axis * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the dual quaternion to rotate * @param {number} rad how far should the rotation be * @returns {quat2} out */ export function rotateX(out, a, rad) { var bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7], ax1 = ax * bw + aw * bx + ay * bz - az * by, ay1 = ay * bw + aw * by + az * bx - ax * bz, az1 = az * bw + aw * bz + ax * by - ay * bx, aw1 = aw * bw - ax * bx - ay * by - az * bz; quat.rotateX(out, a, rad); bx = out[0]; by = out[1]; bz = out[2]; bw = out[3]; out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by; out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz; out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx; out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz; return out; } /** * Rotates a dual quat around the Y axis * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the dual quaternion to rotate * @param {number} rad how far should the rotation be * @returns {quat2} out */ export function rotateY(out, a, rad) { var bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7], ax1 = ax * bw + aw * bx + ay * bz - az * by, ay1 = ay * bw + aw * by + az * bx - ax * bz, az1 = az * bw + aw * bz + ax * by - ay * bx, aw1 = aw * bw - ax * bx - ay * by - az * bz; quat.rotateY(out, a, rad); bx = out[0]; by = out[1]; bz = out[2]; bw = out[3]; out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by; out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz; out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx; out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz; return out; } /** * Rotates a dual quat around the Z axis * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the dual quaternion to rotate * @param {number} rad how far should the rotation be * @returns {quat2} out */ export function rotateZ(out, a, rad) { var bx = -a[0], by = -a[1], bz = -a[2], bw = a[3], ax = a[4], ay = a[5], az = a[6], aw = a[7], ax1 = ax * bw + aw * bx + ay * bz - az * by, ay1 = ay * bw + aw * by + az * bx - ax * bz, az1 = az * bw + aw * bz + ax * by - ay * bx, aw1 = aw * bw - ax * bx - ay * by - az * bz; quat.rotateZ(out, a, rad); bx = out[0]; by = out[1]; bz = out[2]; bw = out[3]; out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by; out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz; out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx; out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz; return out; } /** * Rotates a dual quat by a given quaternion (a * q) * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the dual quaternion to rotate * @param {ReadonlyQuat} q quaternion to rotate by * @returns {quat2} out */ export function rotateByQuatAppend(out, a, q) { var qx = q[0], qy = q[1], qz = q[2], qw = q[3], ax = a[0], ay = a[1], az = a[2], aw = a[3]; out[0] = ax * qw + aw * qx + ay * qz - az * qy; out[1] = ay * qw + aw * qy + az * qx - ax * qz; out[2] = az * qw + aw * qz + ax * qy - ay * qx; out[3] = aw * qw - ax * qx - ay * qy - az * qz; ax = a[4]; ay = a[5]; az = a[6]; aw = a[7]; out[4] = ax * qw + aw * qx + ay * qz - az * qy; out[5] = ay * qw + aw * qy + az * qx - ax * qz; out[6] = az * qw + aw * qz + ax * qy - ay * qx; out[7] = aw * qw - ax * qx - ay * qy - az * qz; return out; } /** * Rotates a dual quat by a given quaternion (q * a) * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat} q quaternion to rotate by * @param {ReadonlyQuat2} a the dual quaternion to rotate * @returns {quat2} out */ export function rotateByQuatPrepend(out, q, a) { var qx = q[0], qy = q[1], qz = q[2], qw = q[3], bx = a[0], by = a[1], bz = a[2], bw = a[3]; out[0] = qx * bw + qw * bx + qy * bz - qz * by; out[1] = qy * bw + qw * by + qz * bx - qx * bz; out[2] = qz * bw + qw * bz + qx * by - qy * bx; out[3] = qw * bw - qx * bx - qy * by - qz * bz; bx = a[4]; by = a[5]; bz = a[6]; bw = a[7]; out[4] = qx * bw + qw * bx + qy * bz - qz * by; out[5] = qy * bw + qw * by + qz * bx - qx * bz; out[6] = qz * bw + qw * bz + qx * by - qy * bx; out[7] = qw * bw - qx * bx - qy * by - qz * bz; return out; } /** * Rotates a dual quat around a given axis. Does the normalisation automatically * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the dual quaternion to rotate * @param {ReadonlyVec3} axis the axis to rotate around * @param {Number} rad how far the rotation should be * @returns {quat2} out */ export function rotateAroundAxis(out, a, axis, rad) { //Special case for rad = 0 if (Math.abs(rad) < glMatrix.EPSILON) { return copy(out, a); } var axisLength = Math.hypot(axis[0], axis[1], axis[2]); rad = rad * 0.5; var s = Math.sin(rad); var bx = s * axis[0] / axisLength; var by = s * axis[1] / axisLength; var bz = s * axis[2] / axisLength; var bw = Math.cos(rad); var ax1 = a[0], ay1 = a[1], az1 = a[2], aw1 = a[3]; out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by; out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz; out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx; out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz; var ax = a[4], ay = a[5], az = a[6], aw = a[7]; out[4] = ax * bw + aw * bx + ay * bz - az * by; out[5] = ay * bw + aw * by + az * bx - ax * bz; out[6] = az * bw + aw * bz + ax * by - ay * bx; out[7] = aw * bw - ax * bx - ay * by - az * bz; return out; } /** * Adds two dual quat's * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the first operand * @param {ReadonlyQuat2} b the second operand * @returns {quat2} out * @function */ export function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; return out; } /** * Multiplies two dual quat's * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a the first operand * @param {ReadonlyQuat2} b the second operand * @returns {quat2} out */ export function multiply(out, a, b) { var ax0 = a[0], ay0 = a[1], az0 = a[2], aw0 = a[3], bx1 = b[4], by1 = b[5], bz1 = b[6], bw1 = b[7], ax1 = a[4], ay1 = a[5], az1 = a[6], aw1 = a[7], bx0 = b[0], by0 = b[1], bz0 = b[2], bw0 = b[3]; out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0; out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0; out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0; out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0; out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0; out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0; out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0; out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0; return out; } /** * Alias for {@link quat2.multiply} * @function */ export var mul = multiply; /** * Scales a dual quat by a scalar number * * @param {quat2} out the receiving dual quat * @param {ReadonlyQuat2} a the dual quat to scale * @param {Number} b amount to scale the dual quat by * @returns {quat2} out * @function */ export function scale(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; out[6] = a[6] * b; out[7] = a[7] * b; return out; } /** * Calculates the dot product of two dual quat's (The dot product of the real parts) * * @param {ReadonlyQuat2} a the first operand * @param {ReadonlyQuat2} b the second operand * @returns {Number} dot product of a and b * @function */ export var dot = quat.dot; /** * Performs a linear interpolation between two dual quats's * NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5) * * @param {quat2} out the receiving dual quat * @param {ReadonlyQuat2} a the first operand * @param {ReadonlyQuat2} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {quat2} out */ export function lerp(out, a, b, t) { var mt = 1 - t; if (dot(a, b) < 0) t = -t; out[0] = a[0] * mt + b[0] * t; out[1] = a[1] * mt + b[1] * t; out[2] = a[2] * mt + b[2] * t; out[3] = a[3] * mt + b[3] * t; out[4] = a[4] * mt + b[4] * t; out[5] = a[5] * mt + b[5] * t; out[6] = a[6] * mt + b[6] * t; out[7] = a[7] * mt + b[7] * t; return out; } /** * Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a dual quat to calculate inverse of * @returns {quat2} out */ export function invert(out, a) { var sqlen = squaredLength(a); out[0] = -a[0] / sqlen; out[1] = -a[1] / sqlen; out[2] = -a[2] / sqlen; out[3] = a[3] / sqlen; out[4] = -a[4] / sqlen; out[5] = -a[5] / sqlen; out[6] = -a[6] / sqlen; out[7] = a[7] / sqlen; return out; } /** * Calculates the conjugate of a dual quat * If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result. * * @param {quat2} out the receiving quaternion * @param {ReadonlyQuat2} a quat to calculate conjugate of * @returns {quat2} out */ export function conjugate(out, a) { out[0] = -a[0]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a[3]; out[4] = -a[4]; out[5] = -a[5]; out[6] = -a[6]; out[7] = a[7]; return out; } /** * Calculates the length of a dual quat * * @param {ReadonlyQuat2} a dual quat to calculate length of * @returns {Number} length of a * @function */ export var length = quat.length; /** * Alias for {@link quat2.length} * @function */ export var len = length; /** * Calculates the squared length of a dual quat * * @param {ReadonlyQuat2} a dual quat to calculate squared length of * @returns {Number} squared length of a * @function */ export var squaredLength = quat.squaredLength; /** * Alias for {@link quat2.squaredLength} * @function */ export var sqrLen = squaredLength; /** * Normalize a dual quat * * @param {quat2} out the receiving dual quaternion * @param {ReadonlyQuat2} a dual quaternion to normalize * @returns {quat2} out * @function */ export function normalize(out, a) { var magnitude = squaredLength(a); if (magnitude > 0) { magnitude = Math.sqrt(magnitude); var a0 = a[0] / magnitude; var a1 = a[1] / magnitude; var a2 = a[2] / magnitude; var a3 = a[3] / magnitude; var b0 = a[4]; var b1 = a[5]; var b2 = a[6]; var b3 = a[7]; var a_dot_b = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3; out[0] = a0; out[1] = a1; out[2] = a2; out[3] = a3; out[4] = (b0 - a0 * a_dot_b) / magnitude; out[5] = (b1 - a1 * a_dot_b) / magnitude; out[6] = (b2 - a2 * a_dot_b) / magnitude; out[7] = (b3 - a3 * a_dot_b) / magnitude; } return out; } /** * Returns a string representation of a dual quatenion * * @param {ReadonlyQuat2} a dual quaternion to represent as a string * @returns {String} string representation of the dual quat */ export function str(a) { return "quat2(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ")"; } /** * Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyQuat2} a the first dual quaternion. * @param {ReadonlyQuat2} b the second dual quaternion. * @returns {Boolean} true if the dual quaternions are equal, false otherwise. */ export function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7]; } /** * Returns whether or not the dual quaternions have approximately the same elements in the same position. * * @param {ReadonlyQuat2} a the first dual quat. * @param {ReadonlyQuat2} b the second dual quat. * @returns {Boolean} true if the dual quats are equal, false otherwise. */ export function equals(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7]; return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)); }