import * as glMatrix from "./common.js"; /** * 2x2 Matrix * @module mat2 */ /** * Creates a new identity mat2 * * @returns {mat2} a new 2x2 matrix */ export function create() { var out = new glMatrix.ARRAY_TYPE(4); if (glMatrix.ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; } out[0] = 1; out[3] = 1; return out; } /** * Creates a new mat2 initialized with values from an existing matrix * * @param {ReadonlyMat2} a matrix to clone * @returns {mat2} a new 2x2 matrix */ export function clone(a) { var out = new glMatrix.ARRAY_TYPE(4); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Copy the values from one mat2 to another * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ export function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Set a mat2 to the identity matrix * * @param {mat2} out the receiving matrix * @returns {mat2} out */ export function identity(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; return out; } /** * Create a new mat2 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out A new 2x2 matrix */ export function fromValues(m00, m01, m10, m11) { var out = new glMatrix.ARRAY_TYPE(4); out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; } /** * Set the components of a mat2 to the given values * * @param {mat2} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out */ export function set(out, m00, m01, m10, m11) { out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; } /** * Transpose the values of a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ export function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache // some values if (out === a) { var a1 = a[1]; out[1] = a[2]; out[2] = a1; } else { out[0] = a[0]; out[1] = a[2]; out[2] = a[1]; out[3] = a[3]; } return out; } /** * Inverts a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ export function invert(out, a) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; // Calculate the determinant var det = a0 * a3 - a2 * a1; if (!det) { return null; } det = 1.0 / det; out[0] = a3 * det; out[1] = -a1 * det; out[2] = -a2 * det; out[3] = a0 * det; return out; } /** * Calculates the adjugate of a mat2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the source matrix * @returns {mat2} out */ export function adjoint(out, a) { // Caching this value is nessecary if out == a var a0 = a[0]; out[0] = a[3]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a0; return out; } /** * Calculates the determinant of a mat2 * * @param {ReadonlyMat2} a the source matrix * @returns {Number} determinant of a */ export function determinant(a) { return a[0] * a[3] - a[2] * a[1]; } /** * Multiplies two mat2's * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @returns {mat2} out */ export function multiply(out, a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = a0 * b0 + a2 * b1; out[1] = a1 * b0 + a3 * b1; out[2] = a0 * b2 + a2 * b3; out[3] = a1 * b2 + a3 * b3; return out; } /** * Rotates a mat2 by the given angle * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ export function rotate(out, a, rad) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var s = Math.sin(rad); var c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; return out; } /** * Scales the mat2 by the dimensions in the given vec2 * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to rotate * @param {ReadonlyVec2} v the vec2 to scale the matrix by * @returns {mat2} out **/ export function scale(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.rotate(dest, dest, rad); * * @param {mat2} out mat2 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ export function fromRotation(out, rad) { var s = Math.sin(rad); var c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = -s; out[3] = c; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.scale(dest, dest, vec); * * @param {mat2} out mat2 receiving operation result * @param {ReadonlyVec2} v Scaling vector * @returns {mat2} out */ export function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = v[1]; return out; } /** * Returns a string representation of a mat2 * * @param {ReadonlyMat2} a matrix to represent as a string * @returns {String} string representation of the matrix */ export function str(a) { return "mat2(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")"; } /** * Returns Frobenius norm of a mat2 * * @param {ReadonlyMat2} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ export function frob(a) { return Math.hypot(a[0], a[1], a[2], a[3]); } /** * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix * @param {ReadonlyMat2} L the lower triangular matrix * @param {ReadonlyMat2} D the diagonal matrix * @param {ReadonlyMat2} U the upper triangular matrix * @param {ReadonlyMat2} a the input matrix to factorize */ export function LDU(L, D, U, a) { L[2] = a[2] / a[0]; U[0] = a[0]; U[1] = a[1]; U[3] = a[3] - L[2] * U[1]; return [L, D, U]; } /** * Adds two mat2's * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @returns {mat2} out */ export function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @returns {mat2} out */ export function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyMat2} a The first matrix. * @param {ReadonlyMat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {ReadonlyMat2} a The first matrix. * @param {ReadonlyMat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ export function equals(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); } /** * Multiply each element of the matrix by a scalar. * * @param {mat2} out the receiving matrix * @param {ReadonlyMat2} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat2} out */ export function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; return out; } /** * Adds two mat2's after multiplying each element of the second operand by a scalar value. * * @param {mat2} out the receiving vector * @param {ReadonlyMat2} a the first operand * @param {ReadonlyMat2} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat2} out */ export function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; out[3] = a[3] + b[3] * scale; return out; } /** * Alias for {@link mat2.multiply} * @function */ export var mul = multiply; /** * Alias for {@link mat2.subtract} * @function */ export var sub = subtract;