import {geoProjection as projection} from "d3-geo"; import {abs, cos, halfPi, pi, sign, sin, sqrt} from "./math.js"; import {solve} from "./newton.js"; // Based on Torben Jansen's implementation // https://beta.observablehq.com/@toja/nicolosi-globular-projection // https://beta.observablehq.com/@toja/nicolosi-globular-inverse export function nicolosiRaw(lambda, phi) { var sinPhi = sin(phi), q = cos(phi), s = sign(lambda); if (lambda === 0 || abs(phi) === halfPi) return [0, phi]; else if (phi === 0) return [lambda, 0]; else if (abs(lambda) === halfPi) return [lambda * q, halfPi * sinPhi]; var b = pi / (2 * lambda) - (2 * lambda) / pi, c = (2 * phi) / pi, d = (1 - c * c) / (sinPhi - c); var b2 = b * b, d2 = d * d, b2d2 = 1 + b2 / d2, d2b2 = 1 + d2 / b2; var M = ((b * sinPhi) / d - b / 2) / b2d2, N = ((d2 * sinPhi) / b2 + d / 2) / d2b2, m = M * M + (q * q) / b2d2, n = N * N - ((d2 * sinPhi * sinPhi) / b2 + d * sinPhi - 1) / d2b2; return [ halfPi * (M + sqrt(m) * s), halfPi * (N + sqrt(n < 0 ? 0 : n) * sign(-phi * b) * s) ]; } nicolosiRaw.invert = function(x, y) { x /= halfPi; y /= halfPi; var x2 = x * x, y2 = y * y, x2y2 = x2 + y2, pi2 = pi * pi; return [ x ? (x2y2 -1 + sqrt((1 - x2y2) * (1 - x2y2) + 4 * x2)) / (2 * x) * halfPi : 0, solve(function(phi) { return ( x2y2 * (pi * sin(phi) - 2 * phi) * pi + 4 * phi * phi * (y - sin(phi)) + 2 * pi * phi - pi2 * y ); }, 0) ]; }; export default function() { return projection(nicolosiRaw) .scale(127.267); }