import { geomReduce } from "@turf/meta"; // Note: change RADIUS => earthRadius var RADIUS = 6378137; /** * Takes one or more features and returns their area in square meters. * * @name area * @param {GeoJSON} geojson input GeoJSON feature(s) * @returns {number} area in square meters * @example * var polygon = turf.polygon([[[125, -15], [113, -22], [154, -27], [144, -15], [125, -15]]]); * * var area = turf.area(polygon); * * //addToMap * var addToMap = [polygon] * polygon.properties.area = area */ export default function area(geojson) { return geomReduce(geojson, function (value, geom) { return value + calculateArea(geom); }, 0); } /** * Calculate Area * * @private * @param {Geometry} geom GeoJSON Geometries * @returns {number} area */ function calculateArea(geom) { var total = 0; var i; switch (geom.type) { case "Polygon": return polygonArea(geom.coordinates); case "MultiPolygon": for (i = 0; i < geom.coordinates.length; i++) { total += polygonArea(geom.coordinates[i]); } return total; case "Point": case "MultiPoint": case "LineString": case "MultiLineString": return 0; } return 0; } function polygonArea(coords) { var total = 0; if (coords && coords.length > 0) { total += Math.abs(ringArea(coords[0])); for (var i = 1; i < coords.length; i++) { total -= Math.abs(ringArea(coords[i])); } } return total; } /** * @private * Calculate the approximate area of the polygon were it projected onto the earth. * Note that this area will be positive if ring is oriented clockwise, otherwise it will be negative. * * Reference: * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for Polygons on a Sphere", * JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 https://trs.jpl.nasa.gov/handle/2014/40409 * * @param {Array>} coords Ring Coordinates * @returns {number} The approximate signed geodesic area of the polygon in square meters. */ function ringArea(coords) { var p1; var p2; var p3; var lowerIndex; var middleIndex; var upperIndex; var i; var total = 0; var coordsLength = coords.length; if (coordsLength > 2) { for (i = 0; i < coordsLength; i++) { if (i === coordsLength - 2) { // i = N-2 lowerIndex = coordsLength - 2; middleIndex = coordsLength - 1; upperIndex = 0; } else if (i === coordsLength - 1) { // i = N-1 lowerIndex = coordsLength - 1; middleIndex = 0; upperIndex = 1; } else { // i = 0 to N-3 lowerIndex = i; middleIndex = i + 1; upperIndex = i + 2; } p1 = coords[lowerIndex]; p2 = coords[middleIndex]; p3 = coords[upperIndex]; total += (rad(p3[0]) - rad(p1[0])) * Math.sin(rad(p2[1])); } total = (total * RADIUS * RADIUS) / 2; } return total; } function rad(num) { return (num * Math.PI) / 180; }