import "layout"; import "hierarchy"; // Node-link tree diagram using the Reingold-Tilford "tidy" algorithm d3.layout.tree = function() { var hierarchy = d3.layout.hierarchy().sort(null).value(null), separation = d3_layout_treeSeparation, size = [1, 1], // width, height nodeSize = null; function tree(d, i) { var nodes = hierarchy.call(this, d, i), root0 = nodes[0], root1 = wrapTree(root0); // Compute the layout using Buchheim et al.'s algorithm. d3_layout_hierarchyVisitAfter(root1, firstWalk), root1.parent.m = -root1.z; d3_layout_hierarchyVisitBefore(root1, secondWalk); // If a fixed node size is specified, scale x and y. if (nodeSize) d3_layout_hierarchyVisitBefore(root0, sizeNode); // If a fixed tree size is specified, scale x and y based on the extent. // Compute the left-most, right-most, and depth-most nodes for extents. else { var left = root0, right = root0, bottom = root0; d3_layout_hierarchyVisitBefore(root0, function(node) { if (node.x < left.x) left = node; if (node.x > right.x) right = node; if (node.depth > bottom.depth) bottom = node; }); var tx = separation(left, right) / 2 - left.x, kx = size[0] / (right.x + separation(right, left) / 2 + tx), ky = size[1] / (bottom.depth || 1); d3_layout_hierarchyVisitBefore(root0, function(node) { node.x = (node.x + tx) * kx; node.y = node.depth * ky; }); } return nodes; } function wrapTree(root0) { var root1 = {A: null, children: [root0]}, queue = [root1], node1; while ((node1 = queue.pop()) != null) { for (var children = node1.children, child, i = 0, n = children.length; i < n; ++i) { queue.push((children[i] = child = { _: children[i], // source node parent: node1, children: (child = children[i].children) && child.slice() || [], A: null, // default ancestor a: null, // ancestor z: 0, // prelim m: 0, // mod c: 0, // change s: 0, // shift t: null, // thread i: i // number }).a = child); } } return root1.children[0]; } // FIRST WALK // Computes a preliminary x-coordinate for v. Before that, FIRST WALK is // applied recursively to the children of v, as well as the function // APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the // node v is placed to the midpoint of its outermost children. function firstWalk(v) { var children = v.children, siblings = v.parent.children, w = v.i ? siblings[v.i - 1] : null; if (children.length) { d3_layout_treeShift(v); var midpoint = (children[0].z + children[children.length - 1].z) / 2; if (w) { v.z = w.z + separation(v._, w._); v.m = v.z - midpoint; } else { v.z = midpoint; } } else if (w) { v.z = w.z + separation(v._, w._); } v.parent.A = apportion(v, w, v.parent.A || siblings[0]); } // SECOND WALK // Computes all real x-coordinates by summing up the modifiers recursively. function secondWalk(v) { v._.x = v.z + v.parent.m; v.m += v.parent.m; } // APPORTION // The core of the algorithm. Here, a new subtree is combined with the // previous subtrees. Threads are used to traverse the inside and outside // contours of the left and right subtree up to the highest common level. The // vertices used for the traversals are vi+, vi-, vo-, and vo+, where the // superscript o means outside and i means inside, the subscript - means left // subtree and + means right subtree. For summing up the modifiers along the // contour, we use respective variables si+, si-, so-, and so+. Whenever two // nodes of the inside contours conflict, we compute the left one of the // greatest uncommon ancestors using the function ANCESTOR and call MOVE // SUBTREE to shift the subtree and prepare the shifts of smaller subtrees. // Finally, we add a new thread (if necessary). function apportion(v, w, ancestor) { if (w) { var vip = v, vop = v, vim = w, vom = vip.parent.children[0], sip = vip.m, sop = vop.m, sim = vim.m, som = vom.m, shift; while (vim = d3_layout_treeRight(vim), vip = d3_layout_treeLeft(vip), vim && vip) { vom = d3_layout_treeLeft(vom); vop = d3_layout_treeRight(vop); vop.a = v; shift = vim.z + sim - vip.z - sip + separation(vim._, vip._); if (shift > 0) { d3_layout_treeMove(d3_layout_treeAncestor(vim, v, ancestor), v, shift); sip += shift; sop += shift; } sim += vim.m; sip += vip.m; som += vom.m; sop += vop.m; } if (vim && !d3_layout_treeRight(vop)) { vop.t = vim; vop.m += sim - sop; } if (vip && !d3_layout_treeLeft(vom)) { vom.t = vip; vom.m += sip - som; ancestor = v; } } return ancestor; } function sizeNode(node) { node.x *= size[0]; node.y = node.depth * size[1]; } tree.separation = function(x) { if (!arguments.length) return separation; separation = x; return tree; }; tree.size = function(x) { if (!arguments.length) return nodeSize ? null : size; nodeSize = (size = x) == null ? sizeNode : null; return tree; }; tree.nodeSize = function(x) { if (!arguments.length) return nodeSize ? size : null; nodeSize = (size = x) == null ? null : sizeNode; return tree; }; return d3_layout_hierarchyRebind(tree, hierarchy); }; function d3_layout_treeSeparation(a, b) { return a.parent == b.parent ? 1 : 2; } // function d3_layout_treeSeparationRadial(a, b) { // return (a.parent == b.parent ? 1 : 2) / a.depth; // } // NEXT LEFT // This function is used to traverse the left contour of a subtree (or // subforest). It returns the successor of v on this contour. This successor is // either given by the leftmost child of v or by the thread of v. The function // returns null if and only if v is on the highest level of its subtree. function d3_layout_treeLeft(v) { var children = v.children; return children.length ? children[0] : v.t; } // NEXT RIGHT // This function works analogously to NEXT LEFT. function d3_layout_treeRight(v) { var children = v.children, n; return (n = children.length) ? children[n - 1] : v.t; } // MOVE SUBTREE // Shifts the current subtree rooted at w+. This is done by increasing // prelim(w+) and mod(w+) by shift. function d3_layout_treeMove(wm, wp, shift) { var change = shift / (wp.i - wm.i); wp.c -= change; wp.s += shift; wm.c += change; wp.z += shift; wp.m += shift; } // EXECUTE SHIFTS // All other shifts, applied to the smaller subtrees between w- and w+, are // performed by this function. To prepare the shifts, we have to adjust // change(w+), shift(w+), and change(w-). function d3_layout_treeShift(v) { var shift = 0, change = 0, children = v.children, i = children.length, w; while (--i >= 0) { w = children[i]; w.z += shift; w.m += shift; shift += w.s + (change += w.c); } } // ANCESTOR // If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise, // returns the specified (default) ancestor. function d3_layout_treeAncestor(vim, v, ancestor) { return vim.a.parent === v.parent ? vim.a : ancestor; }