import "../math/trigonometry"; var ρ = Math.SQRT2, ρ2 = 2, ρ4 = 4; // p0 = [ux0, uy0, w0] // p1 = [ux1, uy1, w1] d3.interpolateZoom = function(p0, p1) { var ux0 = p0[0], uy0 = p0[1], w0 = p0[2], ux1 = p1[0], uy1 = p1[1], w1 = p1[2], dx = ux1 - ux0, dy = uy1 - uy0, d2 = dx * dx + dy * dy, i, S; // Special case for u0 ≅ u1. if (d2 < ε2) { S = Math.log(w1 / w0) / ρ; i = function(t) { return [ ux0 + t * dx, uy0 + t * dy, w0 * Math.exp(ρ * t * S) ]; } } // General case. else { var d1 = Math.sqrt(d2), b0 = (w1 * w1 - w0 * w0 + ρ4 * d2) / (2 * w0 * ρ2 * d1), b1 = (w1 * w1 - w0 * w0 - ρ4 * d2) / (2 * w1 * ρ2 * d1), r0 = Math.log(Math.sqrt(b0 * b0 + 1) - b0), r1 = Math.log(Math.sqrt(b1 * b1 + 1) - b1); S = (r1 - r0) / ρ; i = function(t) { var s = t * S, coshr0 = d3_cosh(r0), u = w0 / (ρ2 * d1) * (coshr0 * d3_tanh(ρ * s + r0) - d3_sinh(r0)); return [ ux0 + u * dx, uy0 + u * dy, w0 * coshr0 / d3_cosh(ρ * s + r0) ]; } } i.duration = S * 1000; return i; };