import "../core/functor"; import "../math/abs"; import "geom"; import "point"; d3.geom.quadtree = function(points, x1, y1, x2, y2) { var x = d3_geom_pointX, y = d3_geom_pointY, compat; // For backwards-compatibility. if (compat = arguments.length) { x = d3_geom_quadtreeCompatX; y = d3_geom_quadtreeCompatY; if (compat === 3) { y2 = y1; x2 = x1; y1 = x1 = 0; } return quadtree(points); } function quadtree(data) { var d, fx = d3_functor(x), fy = d3_functor(y), xs, ys, i, n, x1_, y1_, x2_, y2_; if (x1 != null) { x1_ = x1, y1_ = y1, x2_ = x2, y2_ = y2; } else { // Compute bounds, and cache points temporarily. x2_ = y2_ = -(x1_ = y1_ = Infinity); xs = [], ys = []; n = data.length; if (compat) for (i = 0; i < n; ++i) { d = data[i]; if (d.x < x1_) x1_ = d.x; if (d.y < y1_) y1_ = d.y; if (d.x > x2_) x2_ = d.x; if (d.y > y2_) y2_ = d.y; xs.push(d.x); ys.push(d.y); } else for (i = 0; i < n; ++i) { var x_ = +fx(d = data[i], i), y_ = +fy(d, i); if (x_ < x1_) x1_ = x_; if (y_ < y1_) y1_ = y_; if (x_ > x2_) x2_ = x_; if (y_ > y2_) y2_ = y_; xs.push(x_); ys.push(y_); } } // Squarify the bounds. var dx = x2_ - x1_, dy = y2_ - y1_; if (dx > dy) y2_ = y1_ + dx; else x2_ = x1_ + dy; // Recursively inserts the specified point p at the node n or one of its // descendants. The bounds are defined by [x1, x2] and [y1, y2]. function insert(n, d, x, y, x1, y1, x2, y2) { if (isNaN(x) || isNaN(y)) return; // ignore invalid points if (n.leaf) { var nx = n.x, ny = n.y; if (nx != null) { // If the point at this leaf node is at the same position as the new // point we are adding, we leave the point associated with the // internal node while adding the new point to a child node. This // avoids infinite recursion. if ((abs(nx - x) + abs(ny - y)) < 0.01) { insertChild(n, d, x, y, x1, y1, x2, y2); } else { var nPoint = n.point; n.x = n.y = n.point = null; insertChild(n, nPoint, nx, ny, x1, y1, x2, y2); insertChild(n, d, x, y, x1, y1, x2, y2); } } else { n.x = x, n.y = y, n.point = d; } } else { insertChild(n, d, x, y, x1, y1, x2, y2); } } // Recursively inserts the specified point [x, y] into a descendant of node // n. The bounds are defined by [x1, x2] and [y1, y2]. function insertChild(n, d, x, y, x1, y1, x2, y2) { // Compute the split point, and the quadrant in which to insert p. var xm = (x1 + x2) * 0.5, ym = (y1 + y2) * 0.5, right = x >= xm, below = y >= ym, i = below << 1 | right; // Recursively insert into the child node. n.leaf = false; n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode()); // Update the bounds as we recurse. if (right) x1 = xm; else x2 = xm; if (below) y1 = ym; else y2 = ym; insert(n, d, x, y, x1, y1, x2, y2); } // Create the root node. var root = d3_geom_quadtreeNode(); root.add = function(d) { insert(root, d, +fx(d, ++i), +fy(d, i), x1_, y1_, x2_, y2_); }; root.visit = function(f) { d3_geom_quadtreeVisit(f, root, x1_, y1_, x2_, y2_); }; // Find the closest point to the specified point. // TODO allow the initial search extent to be specified? // TODO allow the initial minimum distance to be specified? // TODO allow searching below any node? root.find = function(point) { return d3_geom_quadtreeFind(root, point[0], point[1], x1_, y1_, x2_, y2_); }; // Insert all points. i = -1; if (x1 == null) { while (++i < n) { insert(root, data[i], xs[i], ys[i], x1_, y1_, x2_, y2_); } --i; // index of last insertion } else data.forEach(root.add); // Discard captured fields. xs = ys = data = d = null; return root; } quadtree.x = function(_) { return arguments.length ? (x = _, quadtree) : x; }; quadtree.y = function(_) { return arguments.length ? (y = _, quadtree) : y; }; quadtree.extent = function(_) { if (!arguments.length) return x1 == null ? null : [[x1, y1], [x2, y2]]; if (_ == null) x1 = y1 = x2 = y2 = null; else x1 = +_[0][0], y1 = +_[0][1], x2 = +_[1][0], y2 = +_[1][1]; return quadtree; }; quadtree.size = function(_) { if (!arguments.length) return x1 == null ? null : [x2 - x1, y2 - y1]; if (_ == null) x1 = y1 = x2 = y2 = null; else x1 = y1 = 0, x2 = +_[0], y2 = +_[1]; return quadtree; }; return quadtree; }; function d3_geom_quadtreeCompatX(d) { return d.x; } function d3_geom_quadtreeCompatY(d) { return d.y; } function d3_geom_quadtreeNode() { return { leaf: true, nodes: [], point: null, x: null, y: null }; } function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) { if (!f(node, x1, y1, x2, y2)) { var sx = (x1 + x2) * 0.5, sy = (y1 + y2) * 0.5, children = node.nodes; if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy); if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy); if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2); if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2); } } function d3_geom_quadtreeFind(root, x, y, x0, y0, x3, y3) { var minDistance2 = Infinity, closestPoint; (function find(node, x1, y1, x2, y2) { // stop searching if this cell can’t contain a closer node if (x1 > x3 || y1 > y3 || x2 < x0 || y2 < y0) return; // visit this point if (point = node.point) { var point, dx = x - node.x, dy = y - node.y, distance2 = dx * dx + dy * dy; if (distance2 < minDistance2) { var distance = Math.sqrt(minDistance2 = distance2); x0 = x - distance, y0 = y - distance; x3 = x + distance, y3 = y + distance; closestPoint = point; } } // bisect the current node var children = node.nodes, xm = (x1 + x2) * 0.5, ym = (y1 + y2) * 0.5, right = x >= xm, below = y >= ym; // visit closest cell first for (var i = below << 1 | right, j = i + 4; i < j; ++i) { if (node = children[i & 3]) switch (i & 3) { case 0: find(node, x1, y1, xm, ym); break; case 1: find(node, xm, y1, x2, ym); break; case 2: find(node, x1, ym, xm, y2); break; case 3: find(node, xm, ym, x2, y2); break; } } })(root, x0, y0, x3, y3); return closestPoint; }