// math.gl // SPDX-License-Identifier: MIT and ISC // Copyright (c) vis.gl contributors import { getPolygonSignedArea, DimIndex } from "./polygon-utils.js"; /** * Computes a triangulation of a polygon * @param positions a flat array of the vertex positions that define the polygon. * @param holeIndices an array of hole indices if any (e.g. [5, 8] for a 12-vertex input would mean one hole with vertices 5–7 and another with 8–11). * @param dim the number of elements in each vertex. Size `2` will interpret `positions` as `[x0, y0, x1, y1, ...]` and size `3` will interpret `positions` as `[x0, y0, z0, x1, y1, z1, ...]`. Default `2`. * @param areas areas of outer polygon and holes as computed by `getPolygonSignedArea()`. Can be optionally supplied to speed up triangulation * @returns array of indices into the `positions` array that describes the triangulation of the polygon * Adapted from https://github.com/mapbox/earcut */ export function earcut(positions, holeIndices, dim = 2, areas, plane = 'xy') { const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[0] * dim : positions.length; let outerNode = linkedList(positions, 0, outerLen, dim, true, areas && areas[0], plane); const triangles = []; if (!outerNode || outerNode.next === outerNode.prev) return triangles; let invSize; let maxX; let maxY; let minX; let minY; let x; let y; if (hasHoles) outerNode = eliminateHoles(positions, holeIndices, outerNode, dim, areas, plane); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (positions.length > 80 * dim) { minX = maxX = positions[0]; minY = maxY = positions[1]; for (let i = dim; i < outerLen; i += dim) { x = positions[i]; y = positions[i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max(maxX - minX, maxY - minY); invSize = invSize !== 0 ? 32767 / invSize : 0; } earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0); return triangles; } // create a circular doubly linked list from polygon points in the specified winding order function linkedList(data, start, end, dim, clockwise, area, plane) { let i; let last; if (area === undefined) { area = getPolygonSignedArea(data, { start, end, size: dim, plane }); } let i0 = DimIndex[plane[0]]; let i1 = DimIndex[plane[1]]; // Note that the signed area calculation in math.gl // has the opposite sign to that which was originally // present in earcut, thus the `< 0` is reversed if (clockwise === area < 0) { for (i = start; i < end; i += dim) last = insertNode(i, data[i + i0], data[i + i1], last); } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i + i0], data[i + i1], last); } if (last && equals(last, last.next)) { removeNode(last); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints(start, end) { if (!start) return start; if (!end) end = start; let p = start; let again; do { again = false; if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p); p = end = p.prev; if (p === p.next) break; again = true; } else { p = p.next; } } while (again || p !== end); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { if (!ear) return; // interlink polygon nodes in z-order if (!pass && invSize) indexCurve(ear, minX, minY, invSize); let stop = ear; let prev; let next; // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev; next = ear.next; if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { // cut off the triangle triangles.push((prev.i / dim) | 0); triangles.push((ear.i / dim) | 0); triangles.push((next.i / dim) | 0); removeNode(ear); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally } else if (pass === 1) { ear = cureLocalIntersections(filterPoints(ear), triangles, dim); earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar(ear) { const a = ear.prev; const b = ear; const c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear const ax = a.x; const bx = b.x; const cx = c.x; const ay = a.y; const by = b.y; const cy = c.y; // triangle bbox; min & max are calculated like this for speed const x0 = ax < bx ? (ax < cx ? ax : cx) : bx < cx ? bx : cx; const y0 = ay < by ? (ay < cy ? ay : cy) : by < cy ? by : cy; const x1 = ax > bx ? (ax > cx ? ax : cx) : bx > cx ? bx : cx; const y1 = ay > by ? (ay > cy ? ay : cy) : by > cy ? by : cy; let p = c.next; while (p !== a) { if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.next; } return true; } function isEarHashed(ear, minX, minY, invSize) { const a = ear.prev; const b = ear; const c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear const ax = a.x; const bx = b.x; const cx = c.x; const ay = a.y; const by = b.y; const cy = c.y; // triangle bbox; min & max are calculated like this for speed const x0 = ax < bx ? (ax < cx ? ax : cx) : bx < cx ? bx : cx; const y0 = ay < by ? (ay < cy ? ay : cy) : by < cy ? by : cy; const x1 = ax > bx ? (ax > cx ? ax : cx) : bx > cx ? bx : cx; const y1 = ay > by ? (ay > cy ? ay : cy) : by > cy ? by : cy; // z-order range for the current triangle bbox; const minZ = zOrder(x0, y0, minX, minY, invSize); const maxZ = zOrder(x1, y1, minX, minY, invSize); let p = ear.prevZ; let n = ear.nextZ; // look for points inside the triangle in both directions while (p && p.z >= minZ && n && n.z <= maxZ) { if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while (p && p.z >= minZ) { if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; } // look for remaining points in increasing z-order while (n && n.z <= maxZ) { if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections(start, triangles, dim) { let p = start; do { const a = p.prev; const b = p.next.next; if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { triangles.push((a.i / dim) | 0); triangles.push((p.i / dim) | 0); triangles.push((b.i / dim) | 0); // remove two nodes involved removeNode(p); removeNode(p.next); p = start = b; } p = p.next; } while (p !== start); return filterPoints(p); } // try splitting polygon into two and triangulate them independently function splitEarcut(start, triangles, dim, minX, minY, invSize) { // look for a valid diagonal that divides the polygon into two let a = start; do { let b = a.next.next; while (b !== a.prev) { if (a.i !== b.i && isValidDiagonal(a, b)) { // split the polygon in two by the diagonal let c = splitPolygon(a, b); // filter colinear points around the cuts a = filterPoints(a, a.next); c = filterPoints(c, c.next); // run earcut on each half earcutLinked(a, triangles, dim, minX, minY, invSize, 0); earcutLinked(c, triangles, dim, minX, minY, invSize, 0); return; } b = b.next; } a = a.next; } while (a !== start); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles(data, holeIndices, outerNode, dim, areas, plane) { const queue = []; let i; let len; let start; let end; let list; for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim; end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; list = linkedList(data, start, end, dim, false, areas && areas[i + 1], plane); if (list === list.next) list.steiner = true; queue.push(getLeftmost(list)); } queue.sort(compareX); // process holes from left to right for (i = 0; i < queue.length; i++) { outerNode = eliminateHole(queue[i], outerNode); } return outerNode; } function compareX(a, b) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole(hole, outerNode) { const bridge = findHoleBridge(hole, outerNode); if (!bridge) { return outerNode; } const bridgeReverse = splitPolygon(bridge, hole); // filter collinear points around the cuts filterPoints(bridgeReverse, bridgeReverse.next); return filterPoints(bridge, bridge.next); } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge(hole, outerNode) { let p = outerNode; const hx = hole.x; const hy = hole.y; let qx = -Infinity; let m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { const x = p.x + ((hy - p.y) * (p.next.x - p.x)) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; m = p.x < p.next.x ? p : p.next; if (x === hx) return m; // hole touches outer segment; pick leftmost endpoint } } p = p.next; } while (p !== outerNode); if (!m) return null; // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m; const mx = m.x; const my = m.y; let tanMin = Infinity; let tan; p = m; do { if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { tan = Math.abs(hy - p.y) / (hx - p.x); // tangential if (locallyInside(p, hole) && (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) { m = p; tanMin = tan; } } p = p.next; } while (p !== stop); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector(m, p) { return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; } // interlink polygon nodes in z-order function indexCurve(start, minX, minY, invSize) { let p = start; do { if (p.z === 0) p.z = zOrder(p.x, p.y, minX, minY, invSize); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p !== start); p.prevZ.nextZ = null; p.prevZ = null; sortLinked(p); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked(list) { let e; let i; let inSize = 1; let numMerges; let p; let pSize; let q; let qSize; let tail; do { p = list; list = null; tail = null; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || (qSize > 0 && q)) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder(x, y, minX, minY, invSize) { // coords are transformed into non-negative 15-bit integer range x = ((x - minX) * invSize) | 0; y = ((y - minY) * invSize) | 0; x = (x | (x << 8)) & 0x00ff00ff; x = (x | (x << 4)) & 0x0f0f0f0f; x = (x | (x << 2)) & 0x33333333; x = (x | (x << 1)) & 0x55555555; y = (y | (y << 8)) & 0x00ff00ff; y = (y | (y << 4)) & 0x0f0f0f0f; y = (y | (y << 2)) & 0x33333333; y = (y | (y << 1)) & 0x55555555; return x | (y << 1); } // find the leftmost node of a polygon ring function getLeftmost(start) { let p = start; let leftmost = start; do { if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p; p = p.next; } while (p !== start); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { return ((cx - px) * (ay - py) >= (ax - px) * (cy - py) && (ax - px) * (by - py) >= (bx - px) * (ay - py) && (bx - px) * (cy - py) >= (cx - px) * (by - py)); } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal(a, b) { return (a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible (area(a.prev, a, b.prev) || area(a, b.prev, b))) || // does not create opposite-facing sectors (equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0))); // special zero-length case } // signed area of a triangle function area(p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } // check if two points are equal function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects(p1, q1, p2, q2) { const o1 = sign(area(p1, q1, p2)); const o2 = sign(area(p1, q1, q2)); const o3 = sign(area(p2, q2, p1)); const o4 = sign(area(p2, q2, q1)); if (o1 !== o2 && o3 !== o4) return true; // general case if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment(p, q, r) { return (q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y)); } function sign(num) { return num > 0 ? 1 : num < 0 ? -1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon(a, b) { let p = a; do { if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true; p = p.next; } while (p !== a); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside(a, b) { return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside(a, b) { let p = a; let inside = false; const px = (a.x + b.x) / 2; const py = (a.y + b.y) / 2; do { if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < ((p.next.x - p.x) * (py - p.y)) / (p.next.y - p.y) + p.x) inside = !inside; p = p.next; } while (p !== a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon(a, b) { const a2 = new Vertex(a.i, a.x, a.y); const b2 = new Vertex(b.i, b.x, b.y); const an = a.next; const bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode(i, x, y, last) { const p = new Vertex(i, x, y); if (!last) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode(p) { p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ) p.prevZ.nextZ = p.nextZ; if (p.nextZ) p.nextZ.prevZ = p.prevZ; } class Vertex { constructor(i, x, y) { // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = 0; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; this.i = i; this.x = x; this.y = y; } } //# sourceMappingURL=earcut.js.map