'use strict'; module.exports = UnitBezier; function UnitBezier(p1x, p1y, p2x, p2y) { // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1). this.cx = 3.0 * p1x; this.bx = 3.0 * (p2x - p1x) - this.cx; this.ax = 1.0 - this.cx - this.bx; this.cy = 3.0 * p1y; this.by = 3.0 * (p2y - p1y) - this.cy; this.ay = 1.0 - this.cy - this.by; this.p1x = p1x; this.p1y = p1y; this.p2x = p2x; this.p2y = p2y; } UnitBezier.prototype = { sampleCurveX: function (t) { // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. return ((this.ax * t + this.bx) * t + this.cx) * t; }, sampleCurveY: function (t) { return ((this.ay * t + this.by) * t + this.cy) * t; }, sampleCurveDerivativeX: function (t) { return (3.0 * this.ax * t + 2.0 * this.bx) * t + this.cx; }, solveCurveX: function (x, epsilon) { if (epsilon === undefined) epsilon = 1e-6; if (x < 0.0) return 0.0; if (x > 1.0) return 1.0; var t = x; // First try a few iterations of Newton's method - normally very fast. for (var i = 0; i < 8; i++) { var x2 = this.sampleCurveX(t) - x; if (Math.abs(x2) < epsilon) return t; var d2 = this.sampleCurveDerivativeX(t); if (Math.abs(d2) < 1e-6) break; t = t - x2 / d2; } // Fall back to the bisection method for reliability. var t0 = 0.0; var t1 = 1.0; t = x; for (i = 0; i < 20; i++) { x2 = this.sampleCurveX(t); if (Math.abs(x2 - x) < epsilon) break; if (x > x2) { t0 = t; } else { t1 = t; } t = (t1 - t0) * 0.5 + t0; } return t; }, solve: function (x, epsilon) { return this.sampleCurveY(this.solveCurveX(x, epsilon)); } };