var wgs84 = require('wgs84'); module.exports.geometry = geometry; module.exports.ring = ringArea; function geometry(_) { var area = 0, i; switch (_.type) { case 'Polygon': return polygonArea(_.coordinates); case 'MultiPolygon': for (i = 0; i < _.coordinates.length; i++) { area += polygonArea(_.coordinates[i]); } return area; case 'Point': case 'MultiPoint': case 'LineString': case 'MultiLineString': return 0; case 'GeometryCollection': for (i = 0; i < _.geometries.length; i++) { area += geometry(_.geometries[i]); } return area; } } function polygonArea(coords) { var area = 0; if (coords && coords.length > 0) { area += Math.abs(ringArea(coords[0])); for (var i = 1; i < coords.length; i++) { area -= Math.abs(ringArea(coords[i])); } } return area; } /** * Calculate the approximate area of the polygon were it projected onto * the earth. Note that this area will be positive if ring is oriented * clockwise, otherwise it will be negative. * * Reference: * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409 * * Returns: * {float} The approximate signed geodesic area of the polygon in square * meters. */ function ringArea(coords) { var p1, p2, p3, lowerIndex, middleIndex, upperIndex, i, area = 0, coordsLength = coords.length; if (coordsLength > 2) { for (i = 0; i < coordsLength; i++) { if (i === coordsLength - 2) {// i = N-2 lowerIndex = coordsLength - 2; middleIndex = coordsLength -1; upperIndex = 0; } else if (i === coordsLength - 1) {// i = N-1 lowerIndex = coordsLength - 1; middleIndex = 0; upperIndex = 1; } else { // i = 0 to N-3 lowerIndex = i; middleIndex = i+1; upperIndex = i+2; } p1 = coords[lowerIndex]; p2 = coords[middleIndex]; p3 = coords[upperIndex]; area += ( rad(p3[0]) - rad(p1[0]) ) * Math.sin( rad(p2[1])); } area = area * wgs84.RADIUS * wgs84.RADIUS / 2; } return area; } function rad(_) { return _ * Math.PI / 180; }