export default /* glsl */` // Analytical approximation of the DFG LUT, one half of the // split-sum approximation used in indirect specular lighting. // via 'environmentBRDF' from "Physically Based Shading on Mobile" // https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) { const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); vec4 r = roughness * c0 + c1; float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y; return vec2( -1.04, 1.04 ) * a004 + r.zw; } float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) { #if defined ( PHYSICALLY_CORRECT_LIGHTS ) // based upon Frostbite 3 Moving to Physically-based Rendering // page 32, equation 26: E[window1] // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf // this is intended to be used on spot and point lights who are represented as luminous intensity // but who must be converted to luminous irradiance for surface lighting calculation float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 ); if( cutoffDistance > 0.0 ) { distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) ); } return distanceFalloff; #else if( cutoffDistance > 0.0 && decayExponent > 0.0 ) { return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent ); } return 1.0; #endif } vec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) { return RECIPROCAL_PI * diffuseColor; } // validated vec3 F_Schlick( const in vec3 specularColor, const in float dotVH ) { // Original approximation by Christophe Schlick '94 // float fresnel = pow( 1.0 - dotVH, 5.0 ); // Optimized variant (presented by Epic at SIGGRAPH '13) // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf float fresnel = exp2( ( -5.55473 * dotVH - 6.98316 ) * dotVH ); return ( 1.0 - specularColor ) * fresnel + specularColor; } // validated vec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) { // See F_Schlick float fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV ); vec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0; return Fr * fresnel + F0; } // Microfacet Models for Refraction through Rough Surfaces - equation (34) // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // alpha is "roughness squared" in Disney’s reparameterization float G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) { // geometry term (normalized) = G(l)⋅G(v) / 4(n⋅l)(n⋅v) // also see #12151 float a2 = pow2( alpha ); float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); return 1.0 / ( gl * gv ); } // validated // Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf float G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) { float a2 = pow2( alpha ); // dotNL and dotNV are explicitly swapped. This is not a mistake. float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); return 0.5 / max( gv + gl, EPSILON ); } // Microfacet Models for Refraction through Rough Surfaces - equation (33) // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // alpha is "roughness squared" in Disney’s reparameterization float D_GGX( const in float alpha, const in float dotNH ) { float a2 = pow2( alpha ); float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1 return RECIPROCAL_PI * a2 / pow2( denom ); } // GGX Distribution, Schlick Fresnel, GGX-Smith Visibility vec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) { float alpha = pow2( roughness ); // UE4's roughness vec3 halfDir = normalize( incidentLight.direction + viewDir ); float dotNL = saturate( dot( normal, incidentLight.direction ) ); float dotNV = saturate( dot( normal, viewDir ) ); float dotNH = saturate( dot( normal, halfDir ) ); float dotLH = saturate( dot( incidentLight.direction, halfDir ) ); vec3 F = F_Schlick( specularColor, dotLH ); float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV ); float D = D_GGX( alpha, dotNH ); return F * ( G * D ); } // validated // Rect Area Light // Real-Time Polygonal-Light Shading with Linearly Transformed Cosines // by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt // code: https://github.com/selfshadow/ltc_code/ vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) { const float LUT_SIZE = 64.0; const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; const float LUT_BIAS = 0.5 / LUT_SIZE; float dotNV = saturate( dot( N, V ) ); // texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) ) vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) ); uv = uv * LUT_SCALE + LUT_BIAS; return uv; } float LTC_ClippedSphereFormFactor( const in vec3 f ) { // Real-Time Area Lighting: a Journey from Research to Production (p.102) // An approximation of the form factor of a horizon-clipped rectangle. float l = length( f ); return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 ); } vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) { float x = dot( v1, v2 ); float y = abs( x ); // rational polynomial approximation to theta / sin( theta ) / 2PI float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y; float b = 3.4175940 + ( 4.1616724 + y ) * y; float v = a / b; float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v; return cross( v1, v2 ) * theta_sintheta; } vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) { // bail if point is on back side of plane of light // assumes ccw winding order of light vertices vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ]; vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ]; vec3 lightNormal = cross( v1, v2 ); if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 ); // construct orthonormal basis around N vec3 T1, T2; T1 = normalize( V - N * dot( V, N ) ); T2 = - cross( N, T1 ); // negated from paper; possibly due to a different handedness of world coordinate system // compute transform mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) ); // transform rect vec3 coords[ 4 ]; coords[ 0 ] = mat * ( rectCoords[ 0 ] - P ); coords[ 1 ] = mat * ( rectCoords[ 1 ] - P ); coords[ 2 ] = mat * ( rectCoords[ 2 ] - P ); coords[ 3 ] = mat * ( rectCoords[ 3 ] - P ); // project rect onto sphere coords[ 0 ] = normalize( coords[ 0 ] ); coords[ 1 ] = normalize( coords[ 1 ] ); coords[ 2 ] = normalize( coords[ 2 ] ); coords[ 3 ] = normalize( coords[ 3 ] ); // calculate vector form factor vec3 vectorFormFactor = vec3( 0.0 ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] ); // adjust for horizon clipping float result = LTC_ClippedSphereFormFactor( vectorFormFactor ); /* // alternate method of adjusting for horizon clipping (see referece) // refactoring required float len = length( vectorFormFactor ); float z = vectorFormFactor.z / len; const float LUT_SIZE = 64.0; const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; const float LUT_BIAS = 0.5 / LUT_SIZE; // tabulated horizon-clipped sphere, apparently... vec2 uv = vec2( z * 0.5 + 0.5, len ); uv = uv * LUT_SCALE + LUT_BIAS; float scale = texture2D( ltc_2, uv ).w; float result = len * scale; */ return vec3( result ); } // End Rect Area Light // ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile vec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) { float dotNV = saturate( dot( normal, viewDir ) ); vec2 brdf = integrateSpecularBRDF( dotNV, roughness ); return specularColor * brdf.x + brdf.y; } // validated // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" // Approximates multiscattering in order to preserve energy. // http://www.jcgt.org/published/0008/01/03/ void BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) { float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); vec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness ); vec2 brdf = integrateSpecularBRDF( dotNV, roughness ); vec3 FssEss = F * brdf.x + brdf.y; float Ess = brdf.x + brdf.y; float Ems = 1.0 - Ess; vec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619; // 1/21 vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg ); singleScatter += FssEss; multiScatter += Fms * Ems; } float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) { // geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v) return 0.25; } float D_BlinnPhong( const in float shininess, const in float dotNH ) { return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess ); } vec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) { vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir ); //float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) ); //float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); float dotNH = saturate( dot( geometry.normal, halfDir ) ); float dotLH = saturate( dot( incidentLight.direction, halfDir ) ); vec3 F = F_Schlick( specularColor, dotLH ); float G = G_BlinnPhong_Implicit( /* dotNL, dotNV */ ); float D = D_BlinnPhong( shininess, dotNH ); return F * ( G * D ); } // validated // source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html float GGXRoughnessToBlinnExponent( const in float ggxRoughness ) { return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 ); } float BlinnExponentToGGXRoughness( const in float blinnExponent ) { return sqrt( 2.0 / ( blinnExponent + 2.0 ) ); } #if defined( USE_SHEEN ) // https://github.com/google/filament/blob/master/shaders/src/brdf.fs#L94 float D_Charlie(float roughness, float NoH) { // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF" float invAlpha = 1.0 / roughness; float cos2h = NoH * NoH; float sin2h = max(1.0 - cos2h, 0.0078125); // 2^(-14/2), so sin2h^2 > 0 in fp16 return (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI); } // https://github.com/google/filament/blob/master/shaders/src/brdf.fs#L136 float V_Neubelt(float NoV, float NoL) { // Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886" return saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV))); } vec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) { vec3 N = geometry.normal; vec3 V = geometry.viewDir; vec3 H = normalize( V + L ); float dotNH = saturate( dot( N, H ) ); return specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) ); } #endif `;