import { AdditiveBlending, Box2, BufferGeometry, ClampToEdgeWrapping, Color, DataTexture, InterleavedBuffer, InterleavedBufferAttribute, Mesh, MeshBasicMaterial, NearestFilter, RGBFormat, RawShaderMaterial, Vector2, Vector3, Vector4 } from 'three'; class Lensflare extends Mesh { constructor() { super( Lensflare.Geometry, new MeshBasicMaterial( { opacity: 0, transparent: true } ) ); this.type = 'Lensflare'; this.frustumCulled = false; this.renderOrder = Infinity; // const positionScreen = new Vector3(); const positionView = new Vector3(); // textures const tempMap = new DataTexture( new Uint8Array( 16 * 16 * 3 ), 16, 16, RGBFormat ); tempMap.minFilter = NearestFilter; tempMap.magFilter = NearestFilter; tempMap.wrapS = ClampToEdgeWrapping; tempMap.wrapT = ClampToEdgeWrapping; const occlusionMap = new DataTexture( new Uint8Array( 16 * 16 * 3 ), 16, 16, RGBFormat ); occlusionMap.minFilter = NearestFilter; occlusionMap.magFilter = NearestFilter; occlusionMap.wrapS = ClampToEdgeWrapping; occlusionMap.wrapT = ClampToEdgeWrapping; // material const geometry = Lensflare.Geometry; const material1a = new RawShaderMaterial( { uniforms: { 'scale': { value: null }, 'screenPosition': { value: null } }, vertexShader: /* glsl */` precision highp float; uniform vec3 screenPosition; uniform vec2 scale; attribute vec3 position; void main() { gl_Position = vec4( position.xy * scale + screenPosition.xy, screenPosition.z, 1.0 ); }`, fragmentShader: /* glsl */` precision highp float; void main() { gl_FragColor = vec4( 1.0, 0.0, 1.0, 1.0 ); }`, depthTest: true, depthWrite: false, transparent: false } ); const material1b = new RawShaderMaterial( { uniforms: { 'map': { value: tempMap }, 'scale': { value: null }, 'screenPosition': { value: null } }, vertexShader: /* glsl */` precision highp float; uniform vec3 screenPosition; uniform vec2 scale; attribute vec3 position; attribute vec2 uv; varying vec2 vUV; void main() { vUV = uv; gl_Position = vec4( position.xy * scale + screenPosition.xy, screenPosition.z, 1.0 ); }`, fragmentShader: /* glsl */` precision highp float; uniform sampler2D map; varying vec2 vUV; void main() { gl_FragColor = texture2D( map, vUV ); }`, depthTest: false, depthWrite: false, transparent: false } ); // the following object is used for occlusionMap generation const mesh1 = new Mesh( geometry, material1a ); // const elements = []; const shader = LensflareElement.Shader; const material2 = new RawShaderMaterial( { uniforms: { 'map': { value: null }, 'occlusionMap': { value: occlusionMap }, 'color': { value: new Color( 0xffffff ) }, 'scale': { value: new Vector2() }, 'screenPosition': { value: new Vector3() } }, vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, blending: AdditiveBlending, transparent: true, depthWrite: false } ); const mesh2 = new Mesh( geometry, material2 ); this.addElement = function ( element ) { elements.push( element ); }; // const scale = new Vector2(); const screenPositionPixels = new Vector2(); const validArea = new Box2(); const viewport = new Vector4(); this.onBeforeRender = function ( renderer, scene, camera ) { renderer.getCurrentViewport( viewport ); const invAspect = viewport.w / viewport.z; const halfViewportWidth = viewport.z / 2.0; const halfViewportHeight = viewport.w / 2.0; let size = 16 / viewport.w; scale.set( size * invAspect, size ); validArea.min.set( viewport.x, viewport.y ); validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) ); // calculate position in screen space positionView.setFromMatrixPosition( this.matrixWorld ); positionView.applyMatrix4( camera.matrixWorldInverse ); if ( positionView.z > 0 ) return; // lensflare is behind the camera positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix ); // horizontal and vertical coordinate of the lower left corner of the pixels to copy screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8; screenPositionPixels.y = viewport.y + ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8; // screen cull if ( validArea.containsPoint( screenPositionPixels ) ) { // save current RGB to temp texture renderer.copyFramebufferToTexture( screenPositionPixels, tempMap ); // render pink quad let uniforms = material1a.uniforms; uniforms[ 'scale' ].value = scale; uniforms[ 'screenPosition' ].value = positionScreen; renderer.renderBufferDirect( camera, null, geometry, material1a, mesh1, null ); // copy result to occlusionMap renderer.copyFramebufferToTexture( screenPositionPixels, occlusionMap ); // restore graphics uniforms = material1b.uniforms; uniforms[ 'scale' ].value = scale; uniforms[ 'screenPosition' ].value = positionScreen; renderer.renderBufferDirect( camera, null, geometry, material1b, mesh1, null ); // render elements const vecX = - positionScreen.x * 2; const vecY = - positionScreen.y * 2; for ( let i = 0, l = elements.length; i < l; i ++ ) { const element = elements[ i ]; const uniforms = material2.uniforms; uniforms[ 'color' ].value.copy( element.color ); uniforms[ 'map' ].value = element.texture; uniforms[ 'screenPosition' ].value.x = positionScreen.x + vecX * element.distance; uniforms[ 'screenPosition' ].value.y = positionScreen.y + vecY * element.distance; size = element.size / viewport.w; const invAspect = viewport.w / viewport.z; uniforms[ 'scale' ].value.set( size * invAspect, size ); material2.uniformsNeedUpdate = true; renderer.renderBufferDirect( camera, null, geometry, material2, mesh2, null ); } } }; this.dispose = function () { material1a.dispose(); material1b.dispose(); material2.dispose(); tempMap.dispose(); occlusionMap.dispose(); for ( let i = 0, l = elements.length; i < l; i ++ ) { elements[ i ].texture.dispose(); } }; } } Lensflare.prototype.isLensflare = true; // class LensflareElement { constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) { this.texture = texture; this.size = size; this.distance = distance; this.color = color; } } LensflareElement.Shader = { uniforms: { 'map': { value: null }, 'occlusionMap': { value: null }, 'color': { value: null }, 'scale': { value: null }, 'screenPosition': { value: null } }, vertexShader: /* glsl */` precision highp float; uniform vec3 screenPosition; uniform vec2 scale; uniform sampler2D occlusionMap; attribute vec3 position; attribute vec2 uv; varying vec2 vUV; varying float vVisibility; void main() { vUV = uv; vec2 pos = position.xy; vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) ); visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) ); visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) ); visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) ); visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) ); visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) ); visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) ); visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) ); visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) ); vVisibility = visibility.r / 9.0; vVisibility *= 1.0 - visibility.g / 9.0; vVisibility *= visibility.b / 9.0; gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 ); }`, fragmentShader: /* glsl */` precision highp float; uniform sampler2D map; uniform vec3 color; varying vec2 vUV; varying float vVisibility; void main() { vec4 texture = texture2D( map, vUV ); texture.a *= vVisibility; gl_FragColor = texture; gl_FragColor.rgb *= color; }` }; Lensflare.Geometry = ( function () { const geometry = new BufferGeometry(); const float32Array = new Float32Array( [ - 1, - 1, 0, 0, 0, 1, - 1, 0, 1, 0, 1, 1, 0, 1, 1, - 1, 1, 0, 0, 1 ] ); const interleavedBuffer = new InterleavedBuffer( float32Array, 5 ); geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) ); return geometry; } )(); export { Lensflare, LensflareElement };