'use strict'; var isNumeric = require('fast-isnumeric'); var isArrayOrTypedArray = require('./array').isArrayOrTypedArray; /** * aggNums() returns the result of an aggregate function applied to an array of * values, where non-numerical values have been tossed out. * * @param {function} f - aggregation function (e.g., Math.min) * @param {Number} v - initial value (continuing from previous calls) * if there's no continuing value, use null for selector-type * functions (max,min), or 0 for summations * @param {Array} a - array to aggregate (may be nested, we will recurse, * but all elements must have the same dimension) * @param {Number} len - maximum length of a to aggregate * @return {Number} - result of f applied to a starting from v */ exports.aggNums = function(f, v, a, len) { var i, b; if(!len || len > a.length) len = a.length; if(!isNumeric(v)) v = false; if(isArrayOrTypedArray(a[0])) { b = new Array(len); for(i = 0; i < len; i++) b[i] = exports.aggNums(f, v, a[i]); a = b; } for(i = 0; i < len; i++) { if(!isNumeric(v)) v = a[i]; else if(isNumeric(a[i])) v = f(+v, +a[i]); } return v; }; /** * mean & std dev functions using aggNums, so it handles non-numerics nicely * even need to use aggNums instead of .length, to toss out non-numerics */ exports.len = function(data) { return exports.aggNums(function(a) { return a + 1; }, 0, data); }; exports.mean = function(data, len) { if(!len) len = exports.len(data); return exports.aggNums(function(a, b) { return a + b; }, 0, data) / len; }; exports.geometricMean = function(data, len) { if(!len) len = exports.len(data); return Math.pow(exports.aggNums(function(a, b) { return a * b; }, 1, data), 1 / len); }; exports.midRange = function(numArr) { if(numArr === undefined || numArr.length === 0) return undefined; return (exports.aggNums(Math.max, null, numArr) + exports.aggNums(Math.min, null, numArr)) / 2; }; exports.variance = function(data, len, mean) { if(!len) len = exports.len(data); if(!isNumeric(mean)) mean = exports.mean(data, len); return exports.aggNums(function(a, b) { return a + Math.pow(b - mean, 2); }, 0, data) / len; }; exports.stdev = function(data, len, mean) { return Math.sqrt(exports.variance(data, len, mean)); }; /** * median of a finite set of numbers * reference page: https://en.wikipedia.org/wiki/Median#Finite_set_of_numbers **/ exports.median = function(data) { var b = data.slice().sort(); return exports.interp(b, 0.5); }; /** * interp() computes a percentile (quantile) for a given distribution. * We interpolate the distribution (to compute quantiles, we follow method #10 here: * http://jse.amstat.org/v14n3/langford.html). * Typically the index or rank (n * arr.length) may be non-integer. * For reference: ends are clipped to the extreme values in the array; * For box plots: index you get is half a point too high (see * http://en.wikipedia.org/wiki/Percentile#Nearest_rank) but note that this definition * indexes from 1 rather than 0, so we subtract 1/2 (instead of add). * * @param {Array} arr - This array contains the values that make up the distribution. * @param {Number} n - Between 0 and 1, n = p/100 is such that we compute the p^th percentile. * For example, the 50th percentile (or median) corresponds to n = 0.5 * @return {Number} - percentile */ exports.interp = function(arr, n) { if(!isNumeric(n)) throw 'n should be a finite number'; n = n * arr.length - 0.5; if(n < 0) return arr[0]; if(n > arr.length - 1) return arr[arr.length - 1]; var frac = n % 1; return frac * arr[Math.ceil(n)] + (1 - frac) * arr[Math.floor(n)]; };