"use strict"; function _typeof(obj) { "@babel/helpers - typeof"; if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; } return _typeof(obj); } Object.defineProperty(exports, "__esModule", { value: true }); exports.create = create; exports.clone = clone; exports.fromValues = fromValues; exports.copy = copy; exports.set = set; exports.add = add; exports.subtract = subtract; exports.multiply = multiply; exports.divide = divide; exports.ceil = ceil; exports.floor = floor; exports.min = min; exports.max = max; exports.round = round; exports.scale = scale; exports.scaleAndAdd = scaleAndAdd; exports.distance = distance; exports.squaredDistance = squaredDistance; exports.length = length; exports.squaredLength = squaredLength; exports.negate = negate; exports.inverse = inverse; exports.normalize = normalize; exports.dot = dot; exports.cross = cross; exports.lerp = lerp; exports.random = random; exports.transformMat2 = transformMat2; exports.transformMat2d = transformMat2d; exports.transformMat3 = transformMat3; exports.transformMat4 = transformMat4; exports.rotate = rotate; exports.angle = angle; exports.zero = zero; exports.str = str; exports.exactEquals = exactEquals; exports.equals = equals; exports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = void 0; var glMatrix = _interopRequireWildcard(require("./common.js")); function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); } function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; } /** * 2 Dimensional Vector * @module vec2 */ /** * Creates a new, empty vec2 * * @returns {vec2} a new 2D vector */ function create() { var out = new glMatrix.ARRAY_TYPE(2); if (glMatrix.ARRAY_TYPE != Float32Array) { out[0] = 0; out[1] = 0; } return out; } /** * Creates a new vec2 initialized with values from an existing vector * * @param {ReadonlyVec2} a vector to clone * @returns {vec2} a new 2D vector */ function clone(a) { var out = new glMatrix.ARRAY_TYPE(2); out[0] = a[0]; out[1] = a[1]; return out; } /** * Creates a new vec2 initialized with the given values * * @param {Number} x X component * @param {Number} y Y component * @returns {vec2} a new 2D vector */ function fromValues(x, y) { var out = new glMatrix.ARRAY_TYPE(2); out[0] = x; out[1] = y; return out; } /** * Copy the values from one vec2 to another * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the source vector * @returns {vec2} out */ function copy(out, a) { out[0] = a[0]; out[1] = a[1]; return out; } /** * Set the components of a vec2 to the given values * * @param {vec2} out the receiving vector * @param {Number} x X component * @param {Number} y Y component * @returns {vec2} out */ function set(out, x, y) { out[0] = x; out[1] = y; return out; } /** * Adds two vec2's * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec2} out */ function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; return out; } /** * Subtracts vector b from vector a * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec2} out */ function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; return out; } /** * Multiplies two vec2's * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec2} out */ function multiply(out, a, b) { out[0] = a[0] * b[0]; out[1] = a[1] * b[1]; return out; } /** * Divides two vec2's * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec2} out */ function divide(out, a, b) { out[0] = a[0] / b[0]; out[1] = a[1] / b[1]; return out; } /** * Math.ceil the components of a vec2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a vector to ceil * @returns {vec2} out */ function ceil(out, a) { out[0] = Math.ceil(a[0]); out[1] = Math.ceil(a[1]); return out; } /** * Math.floor the components of a vec2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a vector to floor * @returns {vec2} out */ function floor(out, a) { out[0] = Math.floor(a[0]); out[1] = Math.floor(a[1]); return out; } /** * Returns the minimum of two vec2's * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec2} out */ function min(out, a, b) { out[0] = Math.min(a[0], b[0]); out[1] = Math.min(a[1], b[1]); return out; } /** * Returns the maximum of two vec2's * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec2} out */ function max(out, a, b) { out[0] = Math.max(a[0], b[0]); out[1] = Math.max(a[1], b[1]); return out; } /** * Math.round the components of a vec2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a vector to round * @returns {vec2} out */ function round(out, a) { out[0] = Math.round(a[0]); out[1] = Math.round(a[1]); return out; } /** * Scales a vec2 by a scalar number * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the vector to scale * @param {Number} b amount to scale the vector by * @returns {vec2} out */ function scale(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; return out; } /** * Adds two vec2's after scaling the second operand by a scalar value * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @param {Number} scale the amount to scale b by before adding * @returns {vec2} out */ function scaleAndAdd(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; return out; } /** * Calculates the euclidian distance between two vec2's * * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {Number} distance between a and b */ function distance(a, b) { var x = b[0] - a[0], y = b[1] - a[1]; return Math.hypot(x, y); } /** * Calculates the squared euclidian distance between two vec2's * * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {Number} squared distance between a and b */ function squaredDistance(a, b) { var x = b[0] - a[0], y = b[1] - a[1]; return x * x + y * y; } /** * Calculates the length of a vec2 * * @param {ReadonlyVec2} a vector to calculate length of * @returns {Number} length of a */ function length(a) { var x = a[0], y = a[1]; return Math.hypot(x, y); } /** * Calculates the squared length of a vec2 * * @param {ReadonlyVec2} a vector to calculate squared length of * @returns {Number} squared length of a */ function squaredLength(a) { var x = a[0], y = a[1]; return x * x + y * y; } /** * Negates the components of a vec2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a vector to negate * @returns {vec2} out */ function negate(out, a) { out[0] = -a[0]; out[1] = -a[1]; return out; } /** * Returns the inverse of the components of a vec2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a vector to invert * @returns {vec2} out */ function inverse(out, a) { out[0] = 1.0 / a[0]; out[1] = 1.0 / a[1]; return out; } /** * Normalize a vec2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a vector to normalize * @returns {vec2} out */ function normalize(out, a) { var x = a[0], y = a[1]; var len = x * x + y * y; if (len > 0) { //TODO: evaluate use of glm_invsqrt here? len = 1 / Math.sqrt(len); } out[0] = a[0] * len; out[1] = a[1] * len; return out; } /** * Calculates the dot product of two vec2's * * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {Number} dot product of a and b */ function dot(a, b) { return a[0] * b[0] + a[1] * b[1]; } /** * Computes the cross product of two vec2's * Note that the cross product must by definition produce a 3D vector * * @param {vec3} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @returns {vec3} out */ function cross(out, a, b) { var z = a[0] * b[1] - a[1] * b[0]; out[0] = out[1] = 0; out[2] = z; return out; } /** * Performs a linear interpolation between two vec2's * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the first operand * @param {ReadonlyVec2} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {vec2} out */ function lerp(out, a, b, t) { var ax = a[0], ay = a[1]; out[0] = ax + t * (b[0] - ax); out[1] = ay + t * (b[1] - ay); return out; } /** * Generates a random vector with the given scale * * @param {vec2} out the receiving vector * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned * @returns {vec2} out */ function random(out, scale) { scale = scale || 1.0; var r = glMatrix.RANDOM() * 2.0 * Math.PI; out[0] = Math.cos(r) * scale; out[1] = Math.sin(r) * scale; return out; } /** * Transforms the vec2 with a mat2 * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the vector to transform * @param {ReadonlyMat2} m matrix to transform with * @returns {vec2} out */ function transformMat2(out, a, m) { var x = a[0], y = a[1]; out[0] = m[0] * x + m[2] * y; out[1] = m[1] * x + m[3] * y; return out; } /** * Transforms the vec2 with a mat2d * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the vector to transform * @param {ReadonlyMat2d} m matrix to transform with * @returns {vec2} out */ function transformMat2d(out, a, m) { var x = a[0], y = a[1]; out[0] = m[0] * x + m[2] * y + m[4]; out[1] = m[1] * x + m[3] * y + m[5]; return out; } /** * Transforms the vec2 with a mat3 * 3rd vector component is implicitly '1' * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the vector to transform * @param {ReadonlyMat3} m matrix to transform with * @returns {vec2} out */ function transformMat3(out, a, m) { var x = a[0], y = a[1]; out[0] = m[0] * x + m[3] * y + m[6]; out[1] = m[1] * x + m[4] * y + m[7]; return out; } /** * Transforms the vec2 with a mat4 * 3rd vector component is implicitly '0' * 4th vector component is implicitly '1' * * @param {vec2} out the receiving vector * @param {ReadonlyVec2} a the vector to transform * @param {ReadonlyMat4} m matrix to transform with * @returns {vec2} out */ function transformMat4(out, a, m) { var x = a[0]; var y = a[1]; out[0] = m[0] * x + m[4] * y + m[12]; out[1] = m[1] * x + m[5] * y + m[13]; return out; } /** * Rotate a 2D vector * @param {vec2} out The receiving vec2 * @param {ReadonlyVec2} a The vec2 point to rotate * @param {ReadonlyVec2} b The origin of the rotation * @param {Number} rad The angle of rotation in radians * @returns {vec2} out */ function rotate(out, a, b, rad) { //Translate point to the origin var p0 = a[0] - b[0], p1 = a[1] - b[1], sinC = Math.sin(rad), cosC = Math.cos(rad); //perform rotation and translate to correct position out[0] = p0 * cosC - p1 * sinC + b[0]; out[1] = p0 * sinC + p1 * cosC + b[1]; return out; } /** * Get the angle between two 2D vectors * @param {ReadonlyVec2} a The first operand * @param {ReadonlyVec2} b The second operand * @returns {Number} The angle in radians */ function angle(a, b) { var x1 = a[0], y1 = a[1], x2 = b[0], y2 = b[1], // mag is the product of the magnitudes of a and b mag = Math.sqrt(x1 * x1 + y1 * y1) * Math.sqrt(x2 * x2 + y2 * y2), // mag &&.. short circuits if mag == 0 cosine = mag && (x1 * x2 + y1 * y2) / mag; // Math.min(Math.max(cosine, -1), 1) clamps the cosine between -1 and 1 return Math.acos(Math.min(Math.max(cosine, -1), 1)); } /** * Set the components of a vec2 to zero * * @param {vec2} out the receiving vector * @returns {vec2} out */ function zero(out) { out[0] = 0.0; out[1] = 0.0; return out; } /** * Returns a string representation of a vector * * @param {ReadonlyVec2} a vector to represent as a string * @returns {String} string representation of the vector */ function str(a) { return "vec2(" + a[0] + ", " + a[1] + ")"; } /** * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===) * * @param {ReadonlyVec2} a The first vector. * @param {ReadonlyVec2} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1]; } /** * Returns whether or not the vectors have approximately the same elements in the same position. * * @param {ReadonlyVec2} a The first vector. * @param {ReadonlyVec2} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function equals(a, b) { var a0 = a[0], a1 = a[1]; var b0 = b[0], b1 = b[1]; return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)); } /** * Alias for {@link vec2.length} * @function */ var len = length; /** * Alias for {@link vec2.subtract} * @function */ exports.len = len; var sub = subtract; /** * Alias for {@link vec2.multiply} * @function */ exports.sub = sub; var mul = multiply; /** * Alias for {@link vec2.divide} * @function */ exports.mul = mul; var div = divide; /** * Alias for {@link vec2.distance} * @function */ exports.div = div; var dist = distance; /** * Alias for {@link vec2.squaredDistance} * @function */ exports.dist = dist; var sqrDist = squaredDistance; /** * Alias for {@link vec2.squaredLength} * @function */ exports.sqrDist = sqrDist; var sqrLen = squaredLength; /** * Perform some operation over an array of vec2s. * * @param {Array} a the array of vectors to iterate over * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed * @param {Number} offset Number of elements to skip at the beginning of the array * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array * @param {Function} fn Function to call for each vector in the array * @param {Object} [arg] additional argument to pass to fn * @returns {Array} a * @function */ exports.sqrLen = sqrLen; var forEach = function () { var vec = create(); return function (a, stride, offset, count, fn, arg) { var i, l; if (!stride) { stride = 2; } if (!offset) { offset = 0; } if (count) { l = Math.min(count * stride + offset, a.length); } else { l = a.length; } for (i = offset; i < l; i += stride) { vec[0] = a[i]; vec[1] = a[i + 1]; fn(vec, vec, arg); a[i] = vec[0]; a[i + 1] = vec[1]; } return a; }; }(); exports.forEach = forEach;