"use strict"; function _typeof(obj) { "@babel/helpers - typeof"; if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; } return _typeof(obj); } Object.defineProperty(exports, "__esModule", { value: true }); exports.create = create; exports.fromMat4 = fromMat4; exports.clone = clone; exports.copy = copy; exports.fromValues = fromValues; exports.set = set; exports.identity = identity; exports.transpose = transpose; exports.invert = invert; exports.adjoint = adjoint; exports.determinant = determinant; exports.multiply = multiply; exports.translate = translate; exports.rotate = rotate; exports.scale = scale; exports.fromTranslation = fromTranslation; exports.fromRotation = fromRotation; exports.fromScaling = fromScaling; exports.fromMat2d = fromMat2d; exports.fromQuat = fromQuat; exports.normalFromMat4 = normalFromMat4; exports.projection = projection; exports.str = str; exports.frob = frob; exports.add = add; exports.subtract = subtract; exports.multiplyScalar = multiplyScalar; exports.multiplyScalarAndAdd = multiplyScalarAndAdd; exports.exactEquals = exactEquals; exports.equals = equals; exports.sub = exports.mul = void 0; var glMatrix = _interopRequireWildcard(require("./common.js")); function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); } function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; } /** * 3x3 Matrix * @module mat3 */ /** * Creates a new identity mat3 * * @returns {mat3} a new 3x3 matrix */ function create() { var out = new glMatrix.ARRAY_TYPE(9); if (glMatrix.ARRAY_TYPE != Float32Array) { out[1] = 0; out[2] = 0; out[3] = 0; out[5] = 0; out[6] = 0; out[7] = 0; } out[0] = 1; out[4] = 1; out[8] = 1; return out; } /** * Copies the upper-left 3x3 values into the given mat3. * * @param {mat3} out the receiving 3x3 matrix * @param {ReadonlyMat4} a the source 4x4 matrix * @returns {mat3} out */ function fromMat4(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[4]; out[4] = a[5]; out[5] = a[6]; out[6] = a[8]; out[7] = a[9]; out[8] = a[10]; return out; } /** * Creates a new mat3 initialized with values from an existing matrix * * @param {ReadonlyMat3} a matrix to clone * @returns {mat3} a new 3x3 matrix */ function clone(a) { var out = new glMatrix.ARRAY_TYPE(9); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Copy the values from one mat3 to another * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Create a new mat3 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} A new mat3 */ function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) { var out = new glMatrix.ARRAY_TYPE(9); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; } /** * Set the components of a mat3 to the given values * * @param {mat3} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} out */ function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; } /** * Set a mat3 to the identity matrix * * @param {mat3} out the receiving matrix * @returns {mat3} out */ function identity(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Transpose the values of a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function transpose(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { var a01 = a[1], a02 = a[2], a12 = a[5]; out[1] = a[3]; out[2] = a[6]; out[3] = a01; out[5] = a[7]; out[6] = a02; out[7] = a12; } else { out[0] = a[0]; out[1] = a[3]; out[2] = a[6]; out[3] = a[1]; out[4] = a[4]; out[5] = a[7]; out[6] = a[2]; out[7] = a[5]; out[8] = a[8]; } return out; } /** * Inverts a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function invert(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; var b01 = a22 * a11 - a12 * a21; var b11 = -a22 * a10 + a12 * a20; var b21 = a21 * a10 - a11 * a20; // Calculate the determinant var det = a00 * b01 + a01 * b11 + a02 * b21; if (!det) { return null; } det = 1.0 / det; out[0] = b01 * det; out[1] = (-a22 * a01 + a02 * a21) * det; out[2] = (a12 * a01 - a02 * a11) * det; out[3] = b11 * det; out[4] = (a22 * a00 - a02 * a20) * det; out[5] = (-a12 * a00 + a02 * a10) * det; out[6] = b21 * det; out[7] = (-a21 * a00 + a01 * a20) * det; out[8] = (a11 * a00 - a01 * a10) * det; return out; } /** * Calculates the adjugate of a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the source matrix * @returns {mat3} out */ function adjoint(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; out[0] = a11 * a22 - a12 * a21; out[1] = a02 * a21 - a01 * a22; out[2] = a01 * a12 - a02 * a11; out[3] = a12 * a20 - a10 * a22; out[4] = a00 * a22 - a02 * a20; out[5] = a02 * a10 - a00 * a12; out[6] = a10 * a21 - a11 * a20; out[7] = a01 * a20 - a00 * a21; out[8] = a00 * a11 - a01 * a10; return out; } /** * Calculates the determinant of a mat3 * * @param {ReadonlyMat3} a the source matrix * @returns {Number} determinant of a */ function determinant(a) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); } /** * Multiplies two mat3's * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function multiply(out, a, b) { var a00 = a[0], a01 = a[1], a02 = a[2]; var a10 = a[3], a11 = a[4], a12 = a[5]; var a20 = a[6], a21 = a[7], a22 = a[8]; var b00 = b[0], b01 = b[1], b02 = b[2]; var b10 = b[3], b11 = b[4], b12 = b[5]; var b20 = b[6], b21 = b[7], b22 = b[8]; out[0] = b00 * a00 + b01 * a10 + b02 * a20; out[1] = b00 * a01 + b01 * a11 + b02 * a21; out[2] = b00 * a02 + b01 * a12 + b02 * a22; out[3] = b10 * a00 + b11 * a10 + b12 * a20; out[4] = b10 * a01 + b11 * a11 + b12 * a21; out[5] = b10 * a02 + b11 * a12 + b12 * a22; out[6] = b20 * a00 + b21 * a10 + b22 * a20; out[7] = b20 * a01 + b21 * a11 + b22 * a21; out[8] = b20 * a02 + b21 * a12 + b22 * a22; return out; } /** * Translate a mat3 by the given vector * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to translate * @param {ReadonlyVec2} v vector to translate by * @returns {mat3} out */ function translate(out, a, v) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], x = v[0], y = v[1]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a10; out[4] = a11; out[5] = a12; out[6] = x * a00 + y * a10 + a20; out[7] = x * a01 + y * a11 + a21; out[8] = x * a02 + y * a12 + a22; return out; } /** * Rotates a mat3 by the given angle * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ function rotate(out, a, rad) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], s = Math.sin(rad), c = Math.cos(rad); out[0] = c * a00 + s * a10; out[1] = c * a01 + s * a11; out[2] = c * a02 + s * a12; out[3] = c * a10 - s * a00; out[4] = c * a11 - s * a01; out[5] = c * a12 - s * a02; out[6] = a20; out[7] = a21; out[8] = a22; return out; } /** * Scales the mat3 by the dimensions in the given vec2 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to rotate * @param {ReadonlyVec2} v the vec2 to scale the matrix by * @returns {mat3} out **/ function scale(out, a, v) { var x = v[0], y = v[1]; out[0] = x * a[0]; out[1] = x * a[1]; out[2] = x * a[2]; out[3] = y * a[3]; out[4] = y * a[4]; out[5] = y * a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.translate(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyVec2} v Translation vector * @returns {mat3} out */ function fromTranslation(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = v[0]; out[7] = v[1]; out[8] = 1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.rotate(dest, dest, rad); * * @param {mat3} out mat3 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ function fromRotation(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = 0; out[3] = -s; out[4] = c; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.scale(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyVec2} v Scaling vector * @returns {mat3} out */ function fromScaling(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = v[1]; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Copies the values from a mat2d into a mat3 * * @param {mat3} out the receiving matrix * @param {ReadonlyMat2d} a the matrix to copy * @returns {mat3} out **/ function fromMat2d(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = 0; out[3] = a[2]; out[4] = a[3]; out[5] = 0; out[6] = a[4]; out[7] = a[5]; out[8] = 1; return out; } /** * Calculates a 3x3 matrix from the given quaternion * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyQuat} q Quaternion to create matrix from * * @returns {mat3} out */ function fromQuat(out, q) { var x = q[0], y = q[1], z = q[2], w = q[3]; var x2 = x + x; var y2 = y + y; var z2 = z + z; var xx = x * x2; var yx = y * x2; var yy = y * y2; var zx = z * x2; var zy = z * y2; var zz = z * z2; var wx = w * x2; var wy = w * y2; var wz = w * z2; out[0] = 1 - yy - zz; out[3] = yx - wz; out[6] = zx + wy; out[1] = yx + wz; out[4] = 1 - xx - zz; out[7] = zy - wx; out[2] = zx - wy; out[5] = zy + wx; out[8] = 1 - xx - yy; return out; } /** * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix * * @param {mat3} out mat3 receiving operation result * @param {ReadonlyMat4} a Mat4 to derive the normal matrix from * * @returns {mat3} out */ function normalFromMat4(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; var a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; var a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; var a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; var b00 = a00 * a11 - a01 * a10; var b01 = a00 * a12 - a02 * a10; var b02 = a00 * a13 - a03 * a10; var b03 = a01 * a12 - a02 * a11; var b04 = a01 * a13 - a03 * a11; var b05 = a02 * a13 - a03 * a12; var b06 = a20 * a31 - a21 * a30; var b07 = a20 * a32 - a22 * a30; var b08 = a20 * a33 - a23 * a30; var b09 = a21 * a32 - a22 * a31; var b10 = a21 * a33 - a23 * a31; var b11 = a22 * a33 - a23 * a32; // Calculate the determinant var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; return out; } /** * Generates a 2D projection matrix with the given bounds * * @param {mat3} out mat3 frustum matrix will be written into * @param {number} width Width of your gl context * @param {number} height Height of gl context * @returns {mat3} out */ function projection(out, width, height) { out[0] = 2 / width; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = -2 / height; out[5] = 0; out[6] = -1; out[7] = 1; out[8] = 1; return out; } /** * Returns a string representation of a mat3 * * @param {ReadonlyMat3} a matrix to represent as a string * @returns {String} string representation of the matrix */ function str(a) { return "mat3(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ", " + a[8] + ")"; } /** * Returns Frobenius norm of a mat3 * * @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ function frob(a) { return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]); } /** * Adds two mat3's * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; return out; } /** * Subtracts matrix b from matrix a * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @returns {mat3} out */ function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; out[6] = a[6] - b[6]; out[7] = a[7] - b[7]; out[8] = a[8] - b[8]; return out; } /** * Multiply each element of the matrix by a scalar. * * @param {mat3} out the receiving matrix * @param {ReadonlyMat3} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat3} out */ function multiplyScalar(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; out[6] = a[6] * b; out[7] = a[7] * b; out[8] = a[8] * b; return out; } /** * Adds two mat3's after multiplying each element of the second operand by a scalar value. * * @param {mat3} out the receiving vector * @param {ReadonlyMat3} a the first operand * @param {ReadonlyMat3} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat3} out */ function multiplyScalarAndAdd(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; out[3] = a[3] + b[3] * scale; out[4] = a[4] + b[4] * scale; out[5] = a[5] + b[5] * scale; out[6] = a[6] + b[6] * scale; out[7] = a[7] + b[7] * scale; out[8] = a[8] + b[8] * scale; return out; } /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyMat3} a The first matrix. * @param {ReadonlyMat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8]; } /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {ReadonlyMat3} a The first matrix. * @param {ReadonlyMat3} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ function equals(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8]; return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)); } /** * Alias for {@link mat3.multiply} * @function */ var mul = multiply; /** * Alias for {@link mat3.subtract} * @function */ exports.mul = mul; var sub = subtract; exports.sub = sub;