// math.gl // SPDX-License-Identifier: MIT and ISC // Copyright (c) vis.gl contributors /* Adapted from https://github.com/mapbox/earcut to allow passing in of outline and hole areas using the `areas` parameter. As the areas are calcuted as part of classifying the polygon rings we can pass them in again to avoid recomputation ISC License Copyright (c) 2016, Mapbox Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // @ts-nocheck /* eslint-disable */ import type {NumericArray} from '@math.gl/core'; import {getPolygonSignedArea, DimIndex, Plane2D} from './polygon-utils'; /** * Computes a triangulation of a polygon * @param positions a flat array of the vertex positions that define the polygon. * @param holeIndices an array of hole indices if any (e.g. [5, 8] for a 12-vertex input would mean one hole with vertices 5–7 and another with 8–11). * @param dim the number of elements in each vertex. Size `2` will interpret `positions` as `[x0, y0, x1, y1, ...]` and size `3` will interpret `positions` as `[x0, y0, z0, x1, y1, z1, ...]`. Default `2`. * @param areas areas of outer polygon and holes as computed by `getPolygonSignedArea()`. Can be optionally supplied to speed up triangulation * @returns array of indices into the `positions` array that describes the triangulation of the polygon * Adapted from https://github.com/mapbox/earcut */ export function earcut( positions: NumericArray, holeIndices?: NumericArray, dim: number = 2, areas?: NumericArray, plane: Plane2D = 'xy' ): number[] { const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[0] * dim : positions.length; let outerNode = linkedList(positions, 0, outerLen, dim, true, areas && areas[0], plane); const triangles = []; if (!outerNode || outerNode.next === outerNode.prev) return triangles; let invSize; let maxX; let maxY; let minX; let minY; let x; let y; if (hasHoles) outerNode = eliminateHoles(positions, holeIndices, outerNode, dim, areas, plane); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (positions.length > 80 * dim) { minX = maxX = positions[0]; minY = maxY = positions[1]; for (let i = dim; i < outerLen; i += dim) { x = positions[i]; y = positions[i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max(maxX - minX, maxY - minY); invSize = invSize !== 0 ? 32767 / invSize : 0; } earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0); return triangles; } // create a circular doubly linked list from polygon points in the specified winding order function linkedList( data: NumericArray, start: number, end: number, dim: number, clockwise: boolean, area: number | undefined, plane: Plane2D ): Vertex { let i; let last; if (area === undefined) { area = getPolygonSignedArea(data, {start, end, size: dim, plane}); } let i0 = DimIndex[plane[0]]; let i1 = DimIndex[plane[1]]; // Note that the signed area calculation in math.gl // has the opposite sign to that which was originally // present in earcut, thus the `< 0` is reversed if (clockwise === area < 0) { for (i = start; i < end; i += dim) last = insertNode(i, data[i + i0], data[i + i1], last); } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i + i0], data[i + i1], last); } if (last && equals(last, last.next)) { removeNode(last); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints(start, end?) { if (!start) return start; if (!end) end = start; let p = start; let again; do { again = false; if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p); p = end = p.prev; if (p === p.next) break; again = true; } else { p = p.next; } } while (again || p !== end); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass?) { if (!ear) return; // interlink polygon nodes in z-order if (!pass && invSize) indexCurve(ear, minX, minY, invSize); let stop = ear; let prev; let next; // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev; next = ear.next; if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { // cut off the triangle triangles.push((prev.i / dim) | 0); triangles.push((ear.i / dim) | 0); triangles.push((next.i / dim) | 0); removeNode(ear); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally } else if (pass === 1) { ear = cureLocalIntersections(filterPoints(ear), triangles, dim); earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar(ear) { const a = ear.prev; const b = ear; const c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear const ax = a.x; const bx = b.x; const cx = c.x; const ay = a.y; const by = b.y; const cy = c.y; // triangle bbox; min & max are calculated like this for speed const x0 = ax < bx ? (ax < cx ? ax : cx) : bx < cx ? bx : cx; const y0 = ay < by ? (ay < cy ? ay : cy) : by < cy ? by : cy; const x1 = ax > bx ? (ax > cx ? ax : cx) : bx > cx ? bx : cx; const y1 = ay > by ? (ay > cy ? ay : cy) : by > cy ? by : cy; let p = c.next; while (p !== a) { if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false; p = p.next; } return true; } function isEarHashed(ear, minX, minY, invSize) { const a = ear.prev; const b = ear; const c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear const ax = a.x; const bx = b.x; const cx = c.x; const ay = a.y; const by = b.y; const cy = c.y; // triangle bbox; min & max are calculated like this for speed const x0 = ax < bx ? (ax < cx ? ax : cx) : bx < cx ? bx : cx; const y0 = ay < by ? (ay < cy ? ay : cy) : by < cy ? by : cy; const x1 = ax > bx ? (ax > cx ? ax : cx) : bx > cx ? bx : cx; const y1 = ay > by ? (ay > cy ? ay : cy) : by > cy ? by : cy; // z-order range for the current triangle bbox; const minZ = zOrder(x0, y0, minX, minY, invSize); const maxZ = zOrder(x1, y1, minX, minY, invSize); let p = ear.prevZ; let n = ear.nextZ; // look for points inside the triangle in both directions while (p && p.z >= minZ && n && n.z <= maxZ) { if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false; p = p.prevZ; if ( n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0 ) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while (p && p.z >= minZ) { if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false; p = p.prevZ; } // look for remaining points in increasing z-order while (n && n.z <= maxZ) { if ( n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0 ) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections(start, triangles, dim) { let p = start; do { const a = p.prev; const b = p.next.next; if ( !equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a) ) { triangles.push((a.i / dim) | 0); triangles.push((p.i / dim) | 0); triangles.push((b.i / dim) | 0); // remove two nodes involved removeNode(p); removeNode(p.next); p = start = b; } p = p.next; } while (p !== start); return filterPoints(p); } // try splitting polygon into two and triangulate them independently function splitEarcut(start, triangles, dim, minX, minY, invSize) { // look for a valid diagonal that divides the polygon into two let a = start; do { let b = a.next.next; while (b !== a.prev) { if (a.i !== b.i && isValidDiagonal(a, b)) { // split the polygon in two by the diagonal let c = splitPolygon(a, b); // filter colinear points around the cuts a = filterPoints(a, a.next); c = filterPoints(c, c.next); // run earcut on each half earcutLinked(a, triangles, dim, minX, minY, invSize, 0); earcutLinked(c, triangles, dim, minX, minY, invSize, 0); return; } b = b.next; } a = a.next; } while (a !== start); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles( data: NumericArray, holeIndices: NumericArray, outerNode: Vertex, dim: number, areas: NumericArray | undefined, plane: Plane2D ): Vertex { const queue = []; let i; let len; let start; let end; let list; for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim; end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; list = linkedList(data, start, end, dim, false, areas && areas[i + 1], plane); if (list === list.next) list.steiner = true; queue.push(getLeftmost(list)); } queue.sort(compareX); // process holes from left to right for (i = 0; i < queue.length; i++) { outerNode = eliminateHole(queue[i], outerNode); } return outerNode; } function compareX(a, b) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole(hole, outerNode) { const bridge = findHoleBridge(hole, outerNode); if (!bridge) { return outerNode; } const bridgeReverse = splitPolygon(bridge, hole); // filter collinear points around the cuts filterPoints(bridgeReverse, bridgeReverse.next); return filterPoints(bridge, bridge.next); } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge(hole, outerNode) { let p = outerNode; const hx = hole.x; const hy = hole.y; let qx = -Infinity; let m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { const x = p.x + ((hy - p.y) * (p.next.x - p.x)) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; m = p.x < p.next.x ? p : p.next; if (x === hx) return m; // hole touches outer segment; pick leftmost endpoint } } p = p.next; } while (p !== outerNode); if (!m) return null; // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m; const mx = m.x; const my = m.y; let tanMin = Infinity; let tan; p = m; do { if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y) ) { tan = Math.abs(hy - p.y) / (hx - p.x); // tangential if ( locallyInside(p, hole) && (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p))))) ) { m = p; tanMin = tan; } } p = p.next; } while (p !== stop); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector(m, p) { return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; } // interlink polygon nodes in z-order function indexCurve(start, minX, minY, invSize) { let p = start; do { if (p.z === 0) p.z = zOrder(p.x, p.y, minX, minY, invSize); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p !== start); p.prevZ.nextZ = null; p.prevZ = null; sortLinked(p); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked(list) { let e; let i; let inSize = 1; let numMerges; let p; let pSize; let q; let qSize; let tail; do { p = list; list = null; tail = null; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || (qSize > 0 && q)) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder(x, y, minX, minY, invSize) { // coords are transformed into non-negative 15-bit integer range x = ((x - minX) * invSize) | 0; y = ((y - minY) * invSize) | 0; x = (x | (x << 8)) & 0x00ff00ff; x = (x | (x << 4)) & 0x0f0f0f0f; x = (x | (x << 2)) & 0x33333333; x = (x | (x << 1)) & 0x55555555; y = (y | (y << 8)) & 0x00ff00ff; y = (y | (y << 4)) & 0x0f0f0f0f; y = (y | (y << 2)) & 0x33333333; y = (y | (y << 1)) & 0x55555555; return x | (y << 1); } // find the leftmost node of a polygon ring function getLeftmost(start) { let p = start; let leftmost = start; do { if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p; p = p.next; } while (p !== start); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { return ( (cx - px) * (ay - py) >= (ax - px) * (cy - py) && (ax - px) * (by - py) >= (bx - px) * (ay - py) && (bx - px) * (cy - py) >= (cx - px) * (by - py) ); } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal(a, b) { return ( a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible (area(a.prev, a, b.prev) || area(a, b.prev, b))) || // does not create opposite-facing sectors (equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0)) ); // special zero-length case } // signed area of a triangle function area(p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } // check if two points are equal function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects(p1, q1, p2, q2) { const o1 = sign(area(p1, q1, p2)); const o2 = sign(area(p1, q1, q2)); const o3 = sign(area(p2, q2, p1)); const o4 = sign(area(p2, q2, q1)); if (o1 !== o2 && o3 !== o4) return true; // general case if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment(p, q, r) { return ( q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y) ); } function sign(num) { return num > 0 ? 1 : num < 0 ? -1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon(a, b) { let p = a; do { if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b) ) return true; p = p.next; } while (p !== a); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside(a, b) { return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside(a, b) { let p = a; let inside = false; const px = (a.x + b.x) / 2; const py = (a.y + b.y) / 2; do { if ( p.y > py !== p.next.y > py && p.next.y !== p.y && px < ((p.next.x - p.x) * (py - p.y)) / (p.next.y - p.y) + p.x ) inside = !inside; p = p.next; } while (p !== a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon(a, b) { const a2 = new Vertex(a.i, a.x, a.y); const b2 = new Vertex(b.i, b.x, b.y); const an = a.next; const bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode(i, x, y, last) { const p = new Vertex(i, x, y); if (!last) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode(p) { p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ) p.prevZ.nextZ = p.nextZ; if (p.nextZ) p.nextZ.prevZ = p.prevZ; } class Vertex { // vertex index in coordinates array i: number; // vertex coordinates x: number; y: number; // previous and next vertex nodes in a polygon ring prev: Vertex = null; next: Vertex = null; // z-order curve value z: number = 0; // previous and next nodes in z-order prevZ: Vertex = null; nextZ: Vertex = null; // indicates whether this is a steiner point steiner: boolean = false; constructor(i: number, x: number, y: number) { this.i = i; this.x = x; this.y = y; } }