import {ICanonicalTileID} from '../tiles_and_coordinates'; // minX, minY, maxX, maxY export type BBox = [number, number, number, number]; export const EXTENT = 8192; export function getTileCoordinates(p: GeoJSON.Position, canonical: ICanonicalTileID): [number, number] { const x = mercatorXfromLng(p[0]); const y = mercatorYfromLat(p[1]); const tilesAtZoom = Math.pow(2, canonical.z); return [Math.round(x * tilesAtZoom * EXTENT), Math.round(y * tilesAtZoom * EXTENT)]; } export function getLngLatFromTileCoord(coord: [number, number], canonical: ICanonicalTileID): GeoJSON.Position { const tilesAtZoom = Math.pow(2, canonical.z); const x = (coord[0] / EXTENT + canonical.x) / tilesAtZoom; const y = (coord[1] / EXTENT + canonical.y) / tilesAtZoom; return [lngFromMercatorXfromLng(x), latFromMercatorY(y)]; } function mercatorXfromLng(lng: number) { return (180 + lng) / 360; } function lngFromMercatorXfromLng(mercatorX: number) { return mercatorX * 360 - 180; } function mercatorYfromLat(lat: number) { return (180 - (180 / Math.PI * Math.log(Math.tan(Math.PI / 4 + lat * Math.PI / 360)))) / 360; } function latFromMercatorY(mercatorY: number) { return 360 / Math.PI * Math.atan(Math.exp((180 - mercatorY * 360) * Math.PI / 180)) - 90; } export function updateBBox(bbox: BBox, coord: GeoJSON.Position) { bbox[0] = Math.min(bbox[0], coord[0]); bbox[1] = Math.min(bbox[1], coord[1]); bbox[2] = Math.max(bbox[2], coord[0]); bbox[3] = Math.max(bbox[3], coord[1]); } export function boxWithinBox(bbox1: BBox, bbox2: BBox) { if (bbox1[0] <= bbox2[0]) return false; if (bbox1[2] >= bbox2[2]) return false; if (bbox1[1] <= bbox2[1]) return false; if (bbox1[3] >= bbox2[3]) return false; return true; } export function rayIntersect(p: [number, number], p1: [number, number], p2: [number, number]): boolean { return ((p1[1] > p[1]) !== (p2[1] > p[1])) && (p[0] < (p2[0] - p1[0]) * (p[1] - p1[1]) / (p2[1] - p1[1]) + p1[0]); } function pointOnBoundary(p: [number, number], p1: [number, number], p2: [number, number]): boolean { const x1 = p[0] - p1[0]; const y1 = p[1] - p1[1]; const x2 = p[0] - p2[0]; const y2 = p[1] - p2[1]; return (x1 * y2 - x2 * y1 === 0) && (x1 * x2 <= 0) && (y1 * y2 <= 0); } // a, b are end points for line segment1, c and d are end points for line segment2 export function segmentIntersectSegment(a: [number, number], b: [number, number], c: [number, number], d: [number, number]) { // check if two segments are parallel or not // precondition is end point a, b is inside polygon, if line a->b is // parallel to polygon edge c->d, then a->b won't intersect with c->d const vectorP: [number, number] = [b[0] - a[0], b[1] - a[1]]; const vectorQ: [number, number] = [d[0] - c[0], d[1] - c[1]]; if (perp(vectorQ, vectorP) === 0) return false; // If lines are intersecting with each other, the relative location should be: // a and b lie in different sides of segment c->d // c and d lie in different sides of segment a->b if (twoSided(a, b, c, d) && twoSided(c, d, a, b)) return true; return false; } export function lineIntersectPolygon(p1, p2, polygon) { for (const ring of polygon) { // loop through every edge of the ring for (let j = 0; j < ring.length - 1; ++j) { if (segmentIntersectSegment(p1, p2, ring[j], ring[j + 1])) { return true; } } } return false; } // ray casting algorithm for detecting if point is in polygon export function pointWithinPolygon(point: [number, number], rings: [number, number][][], trueIfOnBoundary = false) { let inside = false; for (const ring of rings) { for (let j = 0; j < ring.length - 1; j++) { if (pointOnBoundary(point, ring[j], ring[j + 1])) return trueIfOnBoundary; if (rayIntersect(point, ring[j], ring[j + 1])) inside = !inside; } } return inside; } export function pointWithinPolygons(point: [number, number], polygons: [number, number][][][]) { for (const polygon of polygons) { if (pointWithinPolygon(point, polygon)) return true; } return false; } export function lineStringWithinPolygon(line: [number, number][], polygon: [number, number][][]) { // First, check if geometry points of line segments are all inside polygon for (const point of line) { if (!pointWithinPolygon(point, polygon)) { return false; } } // Second, check if there is line segment intersecting polygon edge for (let i = 0; i < line.length - 1; ++i) { if (lineIntersectPolygon(line[i], line[i + 1], polygon)) { return false; } } return true; } export function lineStringWithinPolygons(line: [number, number][], polygons: [number, number][][][]) { for (const polygon of polygons) { if (lineStringWithinPolygon(line, polygon)) return true; } return false; } function perp(v1: [number, number], v2: [number, number]) { return (v1[0] * v2[1] - v1[1] * v2[0]); } // check if p1 and p2 are in different sides of line segment q1->q2 function twoSided(p1: [number, number], p2: [number, number], q1: [number, number], q2: [number, number]) { // q1->p1 (x1, y1), q1->p2 (x2, y2), q1->q2 (x3, y3) const x1 = p1[0] - q1[0]; const y1 = p1[1] - q1[1]; const x2 = p2[0] - q1[0]; const y2 = p2[1] - q1[1]; const x3 = q2[0] - q1[0]; const y3 = q2[1] - q1[1]; const det1 = (x1 * y3 - x3 * y1); const det2 = (x2 * y3 - x3 * y2); if ((det1 > 0 && det2 < 0) || (det1 < 0 && det2 > 0)) return true; return false; }