import { Vector3 } from './Vector3.js'; class Box3 { constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromArray( array ) { let minX = + Infinity; let minY = + Infinity; let minZ = + Infinity; let maxX = - Infinity; let maxY = - Infinity; let maxZ = - Infinity; for ( let i = 0, l = array.length; i < l; i += 3 ) { const x = array[ i ]; const y = array[ i + 1 ]; const z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; } setFromBufferAttribute( attribute ) { let minX = + Infinity; let minY = + Infinity; let minZ = + Infinity; let maxX = - Infinity; let maxY = - Infinity; let maxZ = - Infinity; for ( let i = 0, l = attribute.count; i < l; i ++ ) { const x = attribute.getX( i ); const y = attribute.getY( i ); const z = attribute.getZ( i ); if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } setFromObject( object ) { this.makeEmpty(); return this.expandByObject( object ); } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } expandByObject( object ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); const geometry = object.geometry; if ( geometry !== undefined ) { if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box.copy( geometry.boundingBox ); _box.applyMatrix4( object.matrixWorld ); this.union( _box ); } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ] ); } return this; } containsPoint( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); } intersectsBox( box ) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; } intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); } intersectsPlane( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); } intersectsTriangle( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0.subVectors( triangle.a, _center ); _v1.subVectors( triangle.b, _center ); _v2.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1, _v0 ); _f1.subVectors( _v2, _v1 ); _f2.subVectors( _v0, _v2 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0, _v1, _v2, _extents ); } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { const clampedPoint = _vector.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); } getBoundingSphere( target ) { this.getCenter( target.center ); target.radius = this.getSize( _vector ).length() * 0.5; return target; } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty(); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } applyMatrix4( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } Box3.prototype.isBox3 = true; const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ]; const _vector = /*@__PURE__*/ new Vector3(); const _box = /*@__PURE__*/ new Box3(); // triangle centered vertices const _v0 = /*@__PURE__*/ new Vector3(); const _v1 = /*@__PURE__*/ new Vector3(); const _v2 = /*@__PURE__*/ new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3(); const _f1 = /*@__PURE__*/ new Vector3(); const _f2 = /*@__PURE__*/ new Vector3(); const _center = /*@__PURE__*/ new Vector3(); const _extents = /*@__PURE__*/ new Vector3(); const _triangleNormal = /*@__PURE__*/ new Vector3(); const _testAxis = /*@__PURE__*/ new Vector3(); function satForAxes( axes, v0, v1, v2, extents ) { for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the seperating axis const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the seperating axis const p0 = v0.dot( _testAxis ); const p1 = v1.dot( _testAxis ); const p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false; } } return true; } export { Box3 };