// // Copyright (c) 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Vector: // Vector class for linear math. // #include "Vector.h" #include Vector2::Vector2() : x(0.0), y(0.0) { } Vector2::Vector2(float x, float y) : x(x), y(y) { } bool Vector2::operator==(const Vector2 &vec) const { return x == vec.x && y == vec.y; } bool Vector2::operator!=(const Vector2 &vec) const { return !(*this == vec); } std::ostream &operator<<(std::ostream &stream, const Vector2 &vec) { stream << "(" << vec.x << "," << vec.y << ")"; return stream; } float Vector2::length(const Vector2 &vec) { float lenSquared = lengthSquared(vec); return (lenSquared != 0.0f) ? sqrtf(lenSquared) : 0.0f; } float Vector2::lengthSquared(const Vector2 &vec) { return vec.x * vec.x + vec.y * vec.y; } Vector2 Vector2::normalize(const Vector2 &vec) { Vector2 ret(0.0f, 0.0f); float len = length(vec); if (len != 0.0f) { float invLen = 1.0f / len; ret.x = vec.x * invLen; ret.y = vec.y * invLen; } return ret; } Vector3::Vector3() : x(0.0), y(0.0), z(0.0) { } Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z) { } float Vector3::length(const Vector3 &vec) { float lenSquared = lengthSquared(vec); return (lenSquared != 0.0f) ? sqrtf(lenSquared) : 0.0f; } float Vector3::lengthSquared(const Vector3 &vec) { return vec.x * vec.x + vec.y * vec.y + vec.z * vec.z; } Vector3 Vector3::normalize(const Vector3 &vec) { Vector3 ret(0.0f, 0.0f, 0.0f); float len = length(vec); if (len != 0.0f) { float invLen = 1.0f / len; ret.x = vec.x * invLen; ret.y = vec.y * invLen; ret.z = vec.z * invLen; } return ret; } float Vector3::dot(const Vector3 &a, const Vector3 &b) { return a.x * b.x + a.y * b.y + a.z * b.z; } Vector3 Vector3::cross(const Vector3 &a, const Vector3 &b) { return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } Vector3 operator*(const Vector3 &a, const Vector3 &b) { return Vector3(a.x * b.x, a.y * b.y, a.z * b.z); } Vector3 operator*(const Vector3 &a, const float &b) { return Vector3(a.x * b, a.y * b, a.z * b); } Vector3 operator/(const Vector3 &a, const Vector3 &b) { return Vector3(a.x / b.x, a.y / b.y, a.z / b.z); } Vector3 operator/(const Vector3 &a, const float &b) { return Vector3(a.x / b, a.y / b, a.z / b); } Vector3 operator+(const Vector3 &a, const Vector3 &b) { return Vector3(a.x + b.x, a.y + b.y, a.z + b.z); } Vector3 operator-(const Vector3 &a, const Vector3 &b) { return Vector3(a.x - b.x, a.y - b.y, a.z - b.z); } Vector4::Vector4() : x(0.0f), y(0.0f), z(0.0f), w(0.0f) { } Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) { } float Vector4::length(const Vector4 &vec) { float lenSquared = lengthSquared(vec); return (lenSquared != 0.0f) ? sqrtf(lenSquared) : 0.0f; } float Vector4::lengthSquared(const Vector4 &vec) { return vec.x * vec.x + vec.y * vec.y + vec.z * vec.z + vec.w * vec.w; } Vector4 Vector4::normalize(const Vector4 &vec) { Vector4 ret(0.0f, 0.0f, 0.0f, 1.0f); if (vec.w != 0.0f) { float invLen = 1.0f / vec.w; ret.x = vec.x * invLen; ret.y = vec.y * invLen; ret.z = vec.z * invLen; } return ret; } float Vector4::dot(const Vector4 &a, const Vector4 &b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; }