// // Copyright 2015 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // mathutil_unittest: // Unit tests for the utils defined in mathutil.h // #include "mathutil.h" #include using namespace gl; namespace { // Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions. // For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2. TEST(MathUtilTest, packAndUnpackSnorm2x16) { const float input[8][2] = { { 0.0f, 0.0f }, { 1.0f, 1.0f }, { -1.0f, 1.0f }, { -1.0f, -1.0f }, { 0.875f, 0.75f }, { 0.00392f, -0.99215f }, { -0.000675f, 0.004954f }, { -0.6937f, -0.02146f } }; const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; for (size_t i = 0; i < 8; i++) { unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance); EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance); } } // Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values, // result should be clamped to [-1, 1]. TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity) { const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; unpackSnorm2x16(packSnorm2x16(std::numeric_limits::infinity(), std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance); unpackSnorm2x16(packSnorm2x16(std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance); unpackSnorm2x16(packSnorm2x16(-std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance); } // Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions. // For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2. TEST(MathUtilTest, packAndUnpackUnorm2x16) { const float input[8][2] = { { 0.0f, 0.0f }, { 1.0f, 1.0f }, { -1.0f, 1.0f }, { -1.0f, -1.0f }, { 0.875f, 0.75f }, { 0.00392f, -0.99215f }, { -0.000675f, 0.004954f }, { -0.6937f, -0.02146f } }; const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; for (size_t i = 0; i < 8; i++) { unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); float expected = input[i][0] < 0.0f ? 0.0f : input[i][0]; EXPECT_NEAR(expected, outputVal1, floatFaultTolerance); expected = input[i][1] < 0.0f ? 0.0f : input[i][1]; EXPECT_NEAR(expected, outputVal2, floatFaultTolerance); } } // Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values, // result should be clamped to [0, 1]. TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity) { const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; unpackUnorm2x16(packUnorm2x16(std::numeric_limits::infinity(), std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance); unpackUnorm2x16(packUnorm2x16(std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance); unpackUnorm2x16(packUnorm2x16(-std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance); } // Test the correctness of packHalf2x16 and unpackHalf2x16 functions. // For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2. TEST(MathUtilTest, packAndUnpackHalf2x16) { const float input[8][2] = { { 0.0f, 0.0f }, { 1.0f, 1.0f }, { -1.0f, 1.0f }, { -1.0f, -1.0f }, { 0.875f, 0.75f }, { 0.00392f, -0.99215f }, { -0.000675f, 0.004954f }, { -0.6937f, -0.02146f }, }; const float floatFaultTolerance = 0.0005f; float outputVal1, outputVal2; for (size_t i = 0; i < 8; i++) { unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance); EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance); } } // Test the correctness of gl::isNaN function. TEST(MathUtilTest, isNaN) { EXPECT_TRUE(isNaN(bitCast(0xffu << 23 | 1u))); EXPECT_TRUE(isNaN(bitCast(1u << 31 | 0xffu << 23 | 1u))); EXPECT_TRUE(isNaN(bitCast(1u << 31 | 0xffu << 23 | 0x400000u))); EXPECT_TRUE(isNaN(bitCast(1u << 31 | 0xffu << 23 | 0x7fffffu))); EXPECT_FALSE(isNaN(0.0f)); EXPECT_FALSE(isNaN(bitCast(1u << 31 | 0xffu << 23))); EXPECT_FALSE(isNaN(bitCast(0xffu << 23))); } // Test the correctness of gl::isInf function. TEST(MathUtilTest, isInf) { EXPECT_TRUE(isInf(bitCast(0xffu << 23))); EXPECT_TRUE(isInf(bitCast(1u << 31 | 0xffu << 23))); EXPECT_FALSE(isInf(0.0f)); EXPECT_FALSE(isInf(bitCast(0xffu << 23 | 1u))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xffu << 23 | 1u))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xffu << 23 | 0x400000u))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xffu << 23 | 0x7fffffu))); EXPECT_FALSE(isInf(bitCast(0xfeu << 23 | 0x7fffffu))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xfeu << 23 | 0x7fffffu))); } }