// // Copyright (c) 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Based on Stencil_Test.c from // Book: OpenGL(R) ES 2.0 Programming Guide // Authors: Aaftab Munshi, Dan Ginsburg, Dave Shreiner // ISBN-10: 0321502795 // ISBN-13: 9780321502797 // Publisher: Addison-Wesley Professional // URLs: http://safari.informit.com/9780321563835 // http://www.opengles-book.com #include "SampleApplication.h" #include "shader_utils.h" class StencilOperationsSample : public SampleApplication { public: StencilOperationsSample() : SampleApplication("StencilOperations", 1280, 720) { } virtual bool initialize() { const std::string vs = SHADER_SOURCE ( attribute vec4 a_position; void main() { gl_Position = a_position; } ); const std::string fs = SHADER_SOURCE ( precision mediump float; uniform vec4 u_color; void main() { gl_FragColor = u_color; } ); mProgram = CompileProgram(vs, fs); if (!mProgram) { return false; } // Get the attribute locations mPositionLoc = glGetAttribLocation(mProgram, "a_position"); // Get the sampler location mColorLoc = glGetUniformLocation(mProgram, "u_color"); // Set the clear color glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // Set the stencil clear value glClearStencil(0x01); // Set the depth clear value glClearDepthf(0.75f); // Enable the depth and stencil tests glEnable(GL_DEPTH_TEST); glEnable(GL_STENCIL_TEST); return true; } virtual void destroy() { glDeleteProgram(mProgram); } virtual void draw() { GLfloat vertices[] = { -0.75f, 0.25f, 0.50f, // Quad #0 -0.25f, 0.25f, 0.50f, -0.25f, 0.75f, 0.50f, -0.75f, 0.75f, 0.50f, 0.25f, 0.25f, 0.90f, // Quad #1 0.75f, 0.25f, 0.90f, 0.75f, 0.75f, 0.90f, 0.25f, 0.75f, 0.90f, -0.75f, -0.75f, 0.50f, // Quad #2 -0.25f, -0.75f, 0.50f, -0.25f, -0.25f, 0.50f, -0.75f, -0.25f, 0.50f, 0.25f, -0.75f, 0.50f, // Quad #3 0.75f, -0.75f, 0.50f, 0.75f, -0.25f, 0.50f, 0.25f, -0.25f, 0.50f, -1.00f, -1.00f, 0.00f, // Big Quad 1.00f, -1.00f, 0.00f, 1.00f, 1.00f, 0.00f, -1.00f, 1.00f, 0.00f, }; GLubyte indices[][6] = { { 0, 1, 2, 0, 2, 3 }, // Quad #0 { 4, 5, 6, 4, 6, 7 }, // Quad #1 { 8, 9, 10, 8, 10, 11 }, // Quad #2 { 12, 13, 14, 12, 14, 15 }, // Quad #3 { 16, 17, 18, 16, 18, 19 }, // Big Quad }; static const size_t testCount = 4; GLfloat colors[testCount][4] = { { 1.0f, 0.0f, 0.0f, 1.0f }, { 0.0f, 1.0f, 0.0f, 1.0f }, { 0.0f, 0.0f, 1.0f, 1.0f }, { 1.0f, 1.0f, 0.0f, 0.0f }, }; GLuint stencilValues[testCount] = { 0x7, // Result of test 0 0x0, // Result of test 1 0x2, // Result of test 2 0xff // Result of test 3. We need to fill this value in at run-time }; // Set the viewport glViewport(0, 0, getWindow()->getWidth(), getWindow()->getHeight()); // Clear the color, depth, and stencil buffers. At this point, the stencil // buffer will be 0x1 for all pixels glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Use the program object glUseProgram(mProgram); // Load the vertex data glVertexAttribPointer(mPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, vertices); glEnableVertexAttribArray(mPositionLoc); // Test 0: // // Initialize upper-left region. In this case, the stencil-buffer values will // be replaced because the stencil test for the rendered pixels will fail the // stencil test, which is // // ref mask stencil mask // ( 0x7 & 0x3 ) < ( 0x1 & 0x7 ) // // The value in the stencil buffer for these pixels will be 0x7. glStencilFunc(GL_LESS, 0x7, 0x3); glStencilOp(GL_REPLACE, GL_DECR, GL_DECR); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices[0]); // Test 1: // // Initialize the upper-right region. Here, we'll decrement the stencil-buffer // values where the stencil test passes but the depth test fails. The stencil test is // // ref mask stencil mask // ( 0x3 & 0x3 ) > ( 0x1 & 0x3 ) // // but where the geometry fails the depth test. The stencil values for these pixels // will be 0x0. glStencilFunc(GL_GREATER, 0x3, 0x3); glStencilOp(GL_KEEP, GL_DECR, GL_KEEP); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices[1]); // Test 2: // // Initialize the lower-left region. Here we'll increment (with saturation) the // stencil value where both the stencil and depth tests pass. The stencil test for // these pixels will be // // ref mask stencil mask // ( 0x1 & 0x3 ) == ( 0x1 & 0x3 ) // // The stencil values for these pixels will be 0x2. glStencilFunc(GL_EQUAL, 0x1, 0x3); glStencilOp(GL_KEEP, GL_INCR, GL_INCR); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices[2]); // Test 3: // // Finally, initialize the lower-right region. We'll invert the stencil value // where the stencil tests fails. The stencil test for these pixels will be // // ref mask stencil mask // ( 0x2 & 0x1 ) == ( 0x1 & 0x1 ) // // The stencil value here will be set to ~((2^s-1) & 0x1), (with the 0x1 being // from the stencil clear value), where 's' is the number of bits in the stencil // buffer glStencilFunc(GL_EQUAL, 0x2, 0x1); glStencilOp(GL_INVERT, GL_KEEP, GL_KEEP); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices[3]); // Since we don't know at compile time how many stencil bits are present, we'll // query, and update the value correct value in the stencilValues arrays for the // fourth tests. We'll use this value later in rendering. GLint stencilBitCount = 0; glGetIntegerv(GL_STENCIL_BITS, &stencilBitCount); stencilValues[3] = ~(((1 << stencilBitCount) - 1) & 0x1) & 0xff; // Use the stencil buffer for controlling where rendering will occur. We disable // writing to the stencil buffer so we can test against them without modifying // the values we generated. glStencilMask(0x0); for (size_t i = 0; i < testCount; ++i) { glStencilFunc(GL_EQUAL, stencilValues[i], 0xff); glUniform4fv(mColorLoc, 1, colors[i]); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices[4]); } // Reset the stencil mask glStencilMask(0xFF); } private: // Handle to a program object GLuint mProgram; // Attribute locations GLint mPositionLoc; // Uniform locations GLint mColorLoc; }; int main(int argc, char **argv) { StencilOperationsSample app; return app.run(); }