const _floatView = new Float32Array( 1 ); const _int32View = new Int32Array( _floatView.buffer ); class DataUtils { // Converts float32 to float16 (stored as uint16 value). static toHalfFloat( val ) { // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410 /* This method is faster than the OpenEXR implementation (very often * used, eg. in Ogre), with the additional benefit of rounding, inspired * by James Tursa?s half-precision code. */ _floatView[ 0 ] = val; const x = _int32View[ 0 ]; let bits = ( x >> 16 ) & 0x8000; /* Get the sign */ let m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */ const e = ( x >> 23 ) & 0xff; /* Using int is faster here */ /* If zero, or denormal, or exponent underflows too much for a denormal * half, return signed zero. */ if ( e < 103 ) return bits; /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */ if ( e > 142 ) { bits |= 0x7c00; /* If exponent was 0xff and one mantissa bit was set, it means NaN, * not Inf, so make sure we set one mantissa bit too. */ bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff ); return bits; } /* If exponent underflows but not too much, return a denormal */ if ( e < 113 ) { m |= 0x0800; /* Extra rounding may overflow and set mantissa to 0 and exponent * to 1, which is OK. */ bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 ); return bits; } bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 ); /* Extra rounding. An overflow will set mantissa to 0 and increment * the exponent, which is OK. */ bits += m & 1; return bits; } } export { DataUtils };