import * as THREE from 'three'; import { potpack } from '../libs/potpack.module.js'; /** * Progressive Light Map Accumulator, by [zalo](https://github.com/zalo/) * * To use, simply construct a `ProgressiveLightMap` object, * `plmap.addObjectsToLightMap(object)` an array of semi-static * objects and lights to the class once, and then call * `plmap.update(camera)` every frame to begin accumulating * lighting samples. * * This should begin accumulating lightmaps which apply to * your objects, so you can start jittering lighting to achieve * the texture-space effect you're looking for. * * @param {WebGLRenderer} renderer A WebGL Rendering Context * @param {number} res The side-long dimension of you total lightmap */ class ProgressiveLightMap { constructor( renderer, res = 1024 ) { this.renderer = renderer; this.res = res; this.lightMapContainers = []; this.compiled = false; this.scene = new THREE.Scene(); this.scene.background = null; this.tinyTarget = new THREE.WebGLRenderTarget( 1, 1 ); this.buffer1Active = false; this.firstUpdate = true; this.warned = false; // Create the Progressive LightMap Texture const format = /(Android|iPad|iPhone|iPod)/g.test( navigator.userAgent ) ? THREE.HalfFloatType : THREE.FloatType; this.progressiveLightMap1 = new THREE.WebGLRenderTarget( this.res, this.res, { type: format } ); this.progressiveLightMap2 = new THREE.WebGLRenderTarget( this.res, this.res, { type: format } ); // Inject some spicy new logic into a standard phong material this.uvMat = new THREE.MeshPhongMaterial(); this.uvMat.uniforms = {}; this.uvMat.onBeforeCompile = ( shader ) => { // Vertex Shader: Set Vertex Positions to the Unwrapped UV Positions shader.vertexShader = '#define USE_LIGHTMAP\n' + shader.vertexShader.slice( 0, - 1 ) + ' gl_Position = vec4((uv2 - 0.5) * 2.0, 1.0, 1.0); }'; // Fragment Shader: Set Pixels to average in the Previous frame's Shadows const bodyStart = shader.fragmentShader.indexOf( 'void main() {' ); shader.fragmentShader = 'varying vec2 vUv2;\n' + shader.fragmentShader.slice( 0, bodyStart ) + ' uniform sampler2D previousShadowMap;\n uniform float averagingWindow;\n' + shader.fragmentShader.slice( bodyStart - 1, - 1 ) + `\nvec3 texelOld = texture2D(previousShadowMap, vUv2).rgb; gl_FragColor.rgb = mix(texelOld, gl_FragColor.rgb, 1.0/averagingWindow); }`; // Set the Previous Frame's Texture Buffer and Averaging Window shader.uniforms.previousShadowMap = { value: this.progressiveLightMap1.texture }; shader.uniforms.averagingWindow = { value: 100 }; this.uvMat.uniforms = shader.uniforms; // Set the new Shader to this this.uvMat.userData.shader = shader; this.compiled = true; }; } /** * Sets these objects' materials' lightmaps and modifies their uv2's. * @param {Object3D} objects An array of objects and lights to set up your lightmap. */ addObjectsToLightMap( objects ) { // Prepare list of UV bounding boxes for packing later... this.uv_boxes = []; const padding = 3 / this.res; for ( let ob = 0; ob < objects.length; ob ++ ) { const object = objects[ ob ]; // If this object is a light, simply add it to the internal scene if ( object.isLight ) { this.scene.attach( object ); continue; } if ( ! object.geometry.hasAttribute( 'uv' ) ) { console.warn( 'All lightmap objects need UVs!' ); continue; } if ( this.blurringPlane == null ) { this._initializeBlurPlane( this.res, this.progressiveLightMap1 ); } // Apply the lightmap to the object object.material.lightMap = this.progressiveLightMap2.texture; object.material.dithering = true; object.castShadow = true; object.receiveShadow = true; object.renderOrder = 1000 + ob; // Prepare UV boxes for potpack // TODO: Size these by object surface area this.uv_boxes.push( { w: 1 + ( padding * 2 ), h: 1 + ( padding * 2 ), index: ob } ); this.lightMapContainers.push( { basicMat: object.material, object: object } ); this.compiled = false; } // Pack the objects' lightmap UVs into the same global space const dimensions = potpack( this.uv_boxes ); this.uv_boxes.forEach( ( box ) => { const uv2 = objects[ box.index ].geometry.getAttribute( 'uv' ).clone(); for ( let i = 0; i < uv2.array.length; i += uv2.itemSize ) { uv2.array[ i ] = ( uv2.array[ i ] + box.x + padding ) / dimensions.w; uv2.array[ i + 1 ] = ( uv2.array[ i + 1 ] + box.y + padding ) / dimensions.h; } objects[ box.index ].geometry.setAttribute( 'uv2', uv2 ); objects[ box.index ].geometry.getAttribute( 'uv2' ).needsUpdate = true; } ); } /** * This function renders each mesh one at a time into their respective surface maps * @param {Camera} camera Standard Rendering Camera * @param {number} blendWindow When >1, samples will accumulate over time. * @param {boolean} blurEdges Whether to fix UV Edges via blurring */ update( camera, blendWindow = 100, blurEdges = true ) { if ( this.blurringPlane == null ) { return; } // Store the original Render Target const oldTarget = this.renderer.getRenderTarget(); // The blurring plane applies blur to the seams of the lightmap this.blurringPlane.visible = blurEdges; // Steal the Object3D from the real world to our special dimension for ( let l = 0; l < this.lightMapContainers.length; l ++ ) { this.lightMapContainers[ l ].object.oldScene = this.lightMapContainers[ l ].object.parent; this.scene.attach( this.lightMapContainers[ l ].object ); } // Render once normally to initialize everything if ( this.firstUpdate ) { this.renderer.setRenderTarget( this.tinyTarget ); // Tiny for Speed this.renderer.render( this.scene, camera ); this.firstUpdate = false; } // Set each object's material to the UV Unwrapped Surface Mapping Version for ( let l = 0; l < this.lightMapContainers.length; l ++ ) { this.uvMat.uniforms.averagingWindow = { value: blendWindow }; this.lightMapContainers[ l ].object.material = this.uvMat; this.lightMapContainers[ l ].object.oldFrustumCulled = this.lightMapContainers[ l ].object.frustumCulled; this.lightMapContainers[ l ].object.frustumCulled = false; } // Ping-pong two surface buffers for reading/writing const activeMap = this.buffer1Active ? this.progressiveLightMap1 : this.progressiveLightMap2; const inactiveMap = this.buffer1Active ? this.progressiveLightMap2 : this.progressiveLightMap1; // Render the object's surface maps this.renderer.setRenderTarget( activeMap ); this.uvMat.uniforms.previousShadowMap = { value: inactiveMap.texture }; this.blurringPlane.material.uniforms.previousShadowMap = { value: inactiveMap.texture }; this.buffer1Active = ! this.buffer1Active; this.renderer.render( this.scene, camera ); // Restore the object's Real-time Material and add it back to the original world for ( let l = 0; l < this.lightMapContainers.length; l ++ ) { this.lightMapContainers[ l ].object.frustumCulled = this.lightMapContainers[ l ].object.oldFrustumCulled; this.lightMapContainers[ l ].object.material = this.lightMapContainers[ l ].basicMat; this.lightMapContainers[ l ].object.oldScene.attach( this.lightMapContainers[ l ].object ); } // Restore the original Render Target this.renderer.setRenderTarget( oldTarget ); } /** DEBUG * Draw the lightmap in the main scene. Call this after adding the objects to it. * @param {boolean} visible Whether the debug plane should be visible * @param {Vector3} position Where the debug plane should be drawn */ showDebugLightmap( visible, position = undefined ) { if ( this.lightMapContainers.length == 0 ) { if ( ! this.warned ) { console.warn( 'Call this after adding the objects!' ); this.warned = true; } return; } if ( this.labelMesh == null ) { this.labelMaterial = new THREE.MeshBasicMaterial( { map: this.progressiveLightMap1.texture, side: THREE.DoubleSide } ); this.labelPlane = new THREE.PlaneGeometry( 100, 100 ); this.labelMesh = new THREE.Mesh( this.labelPlane, this.labelMaterial ); this.labelMesh.position.y = 250; this.lightMapContainers[ 0 ].object.parent.add( this.labelMesh ); } if ( position != undefined ) { this.labelMesh.position.copy( position ); } this.labelMesh.visible = visible; } /** * INTERNAL Creates the Blurring Plane * @param {number} res The square resolution of this object's lightMap. * @param {WebGLRenderTexture} lightMap The lightmap to initialize the plane with. */ _initializeBlurPlane( res, lightMap = null ) { const blurMaterial = new THREE.MeshBasicMaterial(); blurMaterial.uniforms = { previousShadowMap: { value: null }, pixelOffset: { value: 1.0 / res }, polygonOffset: true, polygonOffsetFactor: - 1, polygonOffsetUnits: 3.0 }; blurMaterial.onBeforeCompile = ( shader ) => { // Vertex Shader: Set Vertex Positions to the Unwrapped UV Positions shader.vertexShader = '#define USE_UV\n' + shader.vertexShader.slice( 0, - 1 ) + ' gl_Position = vec4((uv - 0.5) * 2.0, 1.0, 1.0); }'; // Fragment Shader: Set Pixels to 9-tap box blur the current frame's Shadows const bodyStart = shader.fragmentShader.indexOf( 'void main() {' ); shader.fragmentShader = '#define USE_UV\n' + shader.fragmentShader.slice( 0, bodyStart ) + ' uniform sampler2D previousShadowMap;\n uniform float pixelOffset;\n' + shader.fragmentShader.slice( bodyStart - 1, - 1 ) + ` gl_FragColor.rgb = ( texture2D(previousShadowMap, vUv + vec2( pixelOffset, 0.0 )).rgb + texture2D(previousShadowMap, vUv + vec2( 0.0 , pixelOffset)).rgb + texture2D(previousShadowMap, vUv + vec2( 0.0 , -pixelOffset)).rgb + texture2D(previousShadowMap, vUv + vec2(-pixelOffset, 0.0 )).rgb + texture2D(previousShadowMap, vUv + vec2( pixelOffset, pixelOffset)).rgb + texture2D(previousShadowMap, vUv + vec2(-pixelOffset, pixelOffset)).rgb + texture2D(previousShadowMap, vUv + vec2( pixelOffset, -pixelOffset)).rgb + texture2D(previousShadowMap, vUv + vec2(-pixelOffset, -pixelOffset)).rgb)/8.0; }`; // Set the LightMap Accumulation Buffer shader.uniforms.previousShadowMap = { value: lightMap.texture }; shader.uniforms.pixelOffset = { value: 0.5 / res }; blurMaterial.uniforms = shader.uniforms; // Set the new Shader to this blurMaterial.userData.shader = shader; this.compiled = true; }; this.blurringPlane = new THREE.Mesh( new THREE.PlaneBufferGeometry( 1, 1 ), blurMaterial ); this.blurringPlane.name = 'Blurring Plane'; this.blurringPlane.frustumCulled = false; this.blurringPlane.renderOrder = 0; this.blurringPlane.material.depthWrite = false; this.scene.add( this.blurringPlane ); } } export { ProgressiveLightMap };