import { BufferAttribute, BufferGeometry, Color, FileLoader, Float32BufferAttribute, Group, LineBasicMaterial, LineSegments, Loader, Matrix4, Mesh, MeshPhongMaterial, MeshStandardMaterial, ShaderMaterial, UniformsLib, UniformsUtils, Vector3 } from 'three'; // Special surface finish tag types. // Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented const FINISH_TYPE_DEFAULT = 0; const FINISH_TYPE_CHROME = 1; const FINISH_TYPE_PEARLESCENT = 2; const FINISH_TYPE_RUBBER = 3; const FINISH_TYPE_MATTE_METALLIC = 4; const FINISH_TYPE_METAL = 5; // State machine to search a subobject path. // The LDraw standard establishes these various possible subfolders. const FILE_LOCATION_AS_IS = 0; const FILE_LOCATION_TRY_PARTS = 1; const FILE_LOCATION_TRY_P = 2; const FILE_LOCATION_TRY_MODELS = 3; const FILE_LOCATION_TRY_RELATIVE = 4; const FILE_LOCATION_TRY_ABSOLUTE = 5; const FILE_LOCATION_NOT_FOUND = 6; const conditionalLineVertShader = /* glsl */` attribute vec3 control0; attribute vec3 control1; attribute vec3 direction; varying float discardFlag; #include #include #include #include #include void main() { #include vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 ); gl_Position = projectionMatrix * mvPosition; // Transform the line segment ends and control points into camera clip space vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 ); vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 ); vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 ); c0.xy /= c0.w; c1.xy /= c1.w; p0.xy /= p0.w; p1.xy /= p1.w; // Get the direction of the segment and an orthogonal vector vec2 dir = p1.xy - p0.xy; vec2 norm = vec2( -dir.y, dir.x ); // Get control point directions from the line vec2 c0dir = c0.xy - p1.xy; vec2 c1dir = c1.xy - p1.xy; // If the vectors to the controls points are pointed in different directions away // from the line segment then the line should not be drawn. float d0 = dot( normalize( norm ), normalize( c0dir ) ); float d1 = dot( normalize( norm ), normalize( c1dir ) ); discardFlag = float( sign( d0 ) != sign( d1 ) ); #include #include #include } `; const conditionalLineFragShader = /* glsl */` uniform vec3 diffuse; uniform float opacity; varying float discardFlag; #include #include #include #include #include void main() { if ( discardFlag > 0.5 ) discard; #include vec3 outgoingLight = vec3( 0.0 ); vec4 diffuseColor = vec4( diffuse, opacity ); #include #include outgoingLight = diffuseColor.rgb; // simple shader gl_FragColor = vec4( outgoingLight, diffuseColor.a ); #include #include #include #include } `; const _tempVec0 = new Vector3(); const _tempVec1 = new Vector3(); function smoothNormals( triangles, lineSegments ) { function hashVertex( v ) { // NOTE: 1e2 is pretty coarse but was chosen because it allows edges // to be smoothed as expected (see minifig arms). The errors between edges // could be due to matrix multiplication. const x = ~ ~ ( v.x * 1e2 ); const y = ~ ~ ( v.y * 1e2 ); const z = ~ ~ ( v.z * 1e2 ); return `${ x },${ y },${ z }`; } function hashEdge( v0, v1 ) { return `${ hashVertex( v0 ) }_${ hashVertex( v1 ) }`; } const hardEdges = new Set(); const halfEdgeList = {}; const fullHalfEdgeList = {}; const normals = []; // Save the list of hard edges by hash for ( let i = 0, l = lineSegments.length; i < l; i ++ ) { const ls = lineSegments[ i ]; const v0 = ls.v0; const v1 = ls.v1; hardEdges.add( hashEdge( v0, v1 ) ); hardEdges.add( hashEdge( v1, v0 ) ); } // track the half edges associated with each triangle for ( let i = 0, l = triangles.length; i < l; i ++ ) { const tri = triangles[ i ]; for ( let i2 = 0, l2 = 3; i2 < l2; i2 ++ ) { const index = i2; const next = ( i2 + 1 ) % 3; const v0 = tri[ `v${ index }` ]; const v1 = tri[ `v${ next }` ]; const hash = hashEdge( v0, v1 ); // don't add the triangle if the edge is supposed to be hard if ( hardEdges.has( hash ) ) continue; halfEdgeList[ hash ] = tri; fullHalfEdgeList[ hash ] = tri; } } // NOTE: Some of the normals wind up being skewed in an unexpected way because // quads provide more "influence" to some vertex normals than a triangle due to // the fact that a quad is made up of two triangles and all triangles are weighted // equally. To fix this quads could be tracked separately so their vertex normals // are weighted appropriately or we could try only adding a normal direction // once per normal. // Iterate until we've tried to connect all triangles to share normals while ( true ) { // Stop if there are no more triangles left const halfEdges = Object.keys( halfEdgeList ); if ( halfEdges.length === 0 ) break; // Exhaustively find all connected triangles let i = 0; const queue = [ fullHalfEdgeList[ halfEdges[ 0 ] ] ]; while ( i < queue.length ) { // initialize all vertex normals in this triangle const tri = queue[ i ]; i ++; const faceNormal = tri.faceNormal; if ( tri.n0 === null ) { tri.n0 = faceNormal.clone(); normals.push( tri.n0 ); } if ( tri.n1 === null ) { tri.n1 = faceNormal.clone(); normals.push( tri.n1 ); } if ( tri.n2 === null ) { tri.n2 = faceNormal.clone(); normals.push( tri.n2 ); } // Check if any edge is connected to another triangle edge for ( let i2 = 0, l2 = 3; i2 < l2; i2 ++ ) { const index = i2; const next = ( i2 + 1 ) % 3; const v0 = tri[ `v${ index }` ]; const v1 = tri[ `v${ next }` ]; // delete this triangle from the list so it won't be found again const hash = hashEdge( v0, v1 ); delete halfEdgeList[ hash ]; const reverseHash = hashEdge( v1, v0 ); const otherTri = fullHalfEdgeList[ reverseHash ]; if ( otherTri ) { // NOTE: If the angle between triangles is > 67.5 degrees then assume it's // hard edge. There are some cases where the line segments do not line up exactly // with or span multiple triangle edges (see Lunar Vehicle wheels). if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) { continue; } // if this triangle has already been traversed then it won't be in // the halfEdgeList. If it has not then add it to the queue and delete // it so it won't be found again. if ( reverseHash in halfEdgeList ) { queue.push( otherTri ); delete halfEdgeList[ reverseHash ]; } // Find the matching edge in this triangle and copy the normal vector over for ( let i3 = 0, l3 = 3; i3 < l3; i3 ++ ) { const otherIndex = i3; const otherNext = ( i3 + 1 ) % 3; const otherV0 = otherTri[ `v${ otherIndex }` ]; const otherV1 = otherTri[ `v${ otherNext }` ]; const otherHash = hashEdge( otherV0, otherV1 ); if ( otherHash === reverseHash ) { if ( otherTri[ `n${ otherIndex }` ] === null ) { const norm = tri[ `n${ next }` ]; otherTri[ `n${ otherIndex }` ] = norm; norm.add( otherTri.faceNormal ); } if ( otherTri[ `n${ otherNext }` ] === null ) { const norm = tri[ `n${ index }` ]; otherTri[ `n${ otherNext }` ] = norm; norm.add( otherTri.faceNormal ); } break; } } } } } } // The normals of each face have been added up so now we average them by normalizing the vector. for ( let i = 0, l = normals.length; i < l; i ++ ) { normals[ i ].normalize(); } } function isPrimitiveType( type ) { return /primitive/i.test( type ) || type === 'Subpart'; } class LineParser { constructor( line, lineNumber ) { this.line = line; this.lineLength = line.length; this.currentCharIndex = 0; this.currentChar = ' '; this.lineNumber = lineNumber; } seekNonSpace() { while ( this.currentCharIndex < this.lineLength ) { this.currentChar = this.line.charAt( this.currentCharIndex ); if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) { return; } this.currentCharIndex ++; } } getToken() { const pos0 = this.currentCharIndex ++; // Seek space while ( this.currentCharIndex < this.lineLength ) { this.currentChar = this.line.charAt( this.currentCharIndex ); if ( this.currentChar === ' ' || this.currentChar === '\t' ) { break; } this.currentCharIndex ++; } const pos1 = this.currentCharIndex; this.seekNonSpace(); return this.line.substring( pos0, pos1 ); } getRemainingString() { return this.line.substring( this.currentCharIndex, this.lineLength ); } isAtTheEnd() { return this.currentCharIndex >= this.lineLength; } setToEnd() { this.currentCharIndex = this.lineLength; } getLineNumberString() { return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : ''; } } function sortByMaterial( a, b ) { if ( a.colourCode === b.colourCode ) { return 0; } if ( a.colourCode < b.colourCode ) { return - 1; } return 1; } function createObject( elements, elementSize, isConditionalSegments ) { // Creates a LineSegments (elementSize = 2) or a Mesh (elementSize = 3 ) // With per face / segment material, implemented with mesh groups and materials array // Sort the triangles or line segments by colour code to make later the mesh groups elements.sort( sortByMaterial ); const positions = []; const normals = []; const materials = []; const bufferGeometry = new BufferGeometry(); let prevMaterial = null; let index0 = 0; let numGroupVerts = 0; for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) { const elem = elements[ iElem ]; const v0 = elem.v0; const v1 = elem.v1; // Note that LDraw coordinate system is rotated 180 deg. in the X axis w.r.t. Three.js's one positions.push( v0.x, v0.y, v0.z, v1.x, v1.y, v1.z ); if ( elementSize === 3 ) { positions.push( elem.v2.x, elem.v2.y, elem.v2.z ); const n0 = elem.n0 || elem.faceNormal; const n1 = elem.n1 || elem.faceNormal; const n2 = elem.n2 || elem.faceNormal; normals.push( n0.x, n0.y, n0.z ); normals.push( n1.x, n1.y, n1.z ); normals.push( n2.x, n2.y, n2.z ); } if ( prevMaterial !== elem.material ) { if ( prevMaterial !== null ) { bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 ); } materials.push( elem.material ); prevMaterial = elem.material; index0 = iElem * elementSize; numGroupVerts = elementSize; } else { numGroupVerts += elementSize; } } if ( numGroupVerts > 0 ) { bufferGeometry.addGroup( index0, Infinity, materials.length - 1 ); } bufferGeometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); if ( elementSize === 3 ) { bufferGeometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); } let object3d = null; if ( elementSize === 2 ) { object3d = new LineSegments( bufferGeometry, materials ); } else if ( elementSize === 3 ) { object3d = new Mesh( bufferGeometry, materials ); } if ( isConditionalSegments ) { object3d.isConditionalLine = true; const controlArray0 = new Float32Array( elements.length * 3 * 2 ); const controlArray1 = new Float32Array( elements.length * 3 * 2 ); const directionArray = new Float32Array( elements.length * 3 * 2 ); for ( let i = 0, l = elements.length; i < l; i ++ ) { const os = elements[ i ]; const c0 = os.c0; const c1 = os.c1; const v0 = os.v0; const v1 = os.v1; const index = i * 3 * 2; controlArray0[ index + 0 ] = c0.x; controlArray0[ index + 1 ] = c0.y; controlArray0[ index + 2 ] = c0.z; controlArray0[ index + 3 ] = c0.x; controlArray0[ index + 4 ] = c0.y; controlArray0[ index + 5 ] = c0.z; controlArray1[ index + 0 ] = c1.x; controlArray1[ index + 1 ] = c1.y; controlArray1[ index + 2 ] = c1.z; controlArray1[ index + 3 ] = c1.x; controlArray1[ index + 4 ] = c1.y; controlArray1[ index + 5 ] = c1.z; directionArray[ index + 0 ] = v1.x - v0.x; directionArray[ index + 1 ] = v1.y - v0.y; directionArray[ index + 2 ] = v1.z - v0.z; directionArray[ index + 3 ] = v1.x - v0.x; directionArray[ index + 4 ] = v1.y - v0.y; directionArray[ index + 5 ] = v1.z - v0.z; } bufferGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) ); bufferGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) ); bufferGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) ); } return object3d; } // class LDrawLoader extends Loader { constructor( manager ) { super( manager ); // This is a stack of 'parse scopes' with one level per subobject loaded file. // Each level contains a material lib and also other runtime variables passed between parent and child subobjects // When searching for a material code, the stack is read from top of the stack to bottom // Each material library is an object map keyed by colour codes. this.parseScopesStack = null; // Array of THREE.Material this.materials = []; // Not using THREE.Cache here because it returns the previous HTML error response instead of calling onError() // This also allows to handle the embedded text files ("0 FILE" lines) this.subobjectCache = {}; // This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error. this.fileMap = null; // Add default main triangle and line edge materials (used in piecess that can be coloured with a main color) this.setMaterials( [ this.parseColourMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ), this.parseColourMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) ) ] ); // If this flag is set to true, each subobject will be a Object. // If not (the default), only one object which contains all the merged primitives will be created. this.separateObjects = false; // If this flag is set to true the vertex normals will be smoothed. this.smoothNormals = true; } load( url, onLoad, onProgress, onError ) { if ( ! this.fileMap ) { this.fileMap = {}; } const scope = this; const fileLoader = new FileLoader( this.manager ); fileLoader.setPath( this.path ); fileLoader.setRequestHeader( this.requestHeader ); fileLoader.setWithCredentials( this.withCredentials ); fileLoader.load( url, function ( text ) { scope.processObject( text, onLoad, null, url ); }, onProgress, onError ); } parse( text, path, onLoad ) { // Async parse. This function calls onParse with the parsed THREE.Object3D as parameter this.processObject( text, onLoad, null, path ); } setMaterials( materials ) { // Clears parse scopes stack, adds new scope with material library this.parseScopesStack = []; this.newParseScopeLevel( materials ); this.getCurrentParseScope().isFromParse = false; this.materials = materials; return this; } setFileMap( fileMap ) { this.fileMap = fileMap; return this; } newParseScopeLevel( materials ) { // Adds a new scope level, assign materials to it and returns it const matLib = {}; if ( materials ) { for ( let i = 0, n = materials.length; i < n; i ++ ) { const material = materials[ i ]; matLib[ material.userData.code ] = material; } } const topParseScope = this.getCurrentParseScope(); const newParseScope = { lib: matLib, url: null, // Subobjects subobjects: null, numSubobjects: 0, subobjectIndex: 0, inverted: false, category: null, keywords: null, // Current subobject currentFileName: null, mainColourCode: topParseScope ? topParseScope.mainColourCode : '16', mainEdgeColourCode: topParseScope ? topParseScope.mainEdgeColourCode : '24', currentMatrix: new Matrix4(), matrix: new Matrix4(), // If false, it is a root material scope previous to parse isFromParse: true, triangles: null, lineSegments: null, conditionalSegments: null, // If true, this object is the start of a construction step startingConstructionStep: false }; this.parseScopesStack.push( newParseScope ); return newParseScope; } removeScopeLevel() { this.parseScopesStack.pop(); return this; } addMaterial( material ) { // Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array const matLib = this.getCurrentParseScope().lib; if ( ! matLib[ material.userData.code ] ) { this.materials.push( material ); } matLib[ material.userData.code ] = material; return this; } getMaterial( colourCode ) { // Given a colour code search its material in the parse scopes stack if ( colourCode.startsWith( '0x2' ) ) { // Special 'direct' material value (RGB colour) const colour = colourCode.substring( 3 ); return this.parseColourMetaDirective( new LineParser( 'Direct_Color_' + colour + ' CODE -1 VALUE #' + colour + ' EDGE #' + colour + '' ) ); } for ( let i = this.parseScopesStack.length - 1; i >= 0; i -- ) { const material = this.parseScopesStack[ i ].lib[ colourCode ]; if ( material ) { return material; } } // Material was not found return null; } getParentParseScope() { if ( this.parseScopesStack.length > 1 ) { return this.parseScopesStack[ this.parseScopesStack.length - 2 ]; } return null; } getCurrentParseScope() { if ( this.parseScopesStack.length > 0 ) { return this.parseScopesStack[ this.parseScopesStack.length - 1 ]; } return null; } parseColourMetaDirective( lineParser ) { // Parses a colour definition and returns a THREE.Material or null if error let code = null; // Triangle and line colours let colour = 0xFF00FF; let edgeColour = 0xFF00FF; // Transparency let alpha = 1; let isTransparent = false; // Self-illumination: let luminance = 0; let finishType = FINISH_TYPE_DEFAULT; let canHaveEnvMap = true; let edgeMaterial = null; const name = lineParser.getToken(); if ( ! name ) { throw 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.'; } // Parse tag tokens and their parameters let token = null; while ( true ) { token = lineParser.getToken(); if ( ! token ) { break; } switch ( token.toUpperCase() ) { case 'CODE': code = lineParser.getToken(); break; case 'VALUE': colour = lineParser.getToken(); if ( colour.startsWith( '0x' ) ) { colour = '#' + colour.substring( 2 ); } else if ( ! colour.startsWith( '#' ) ) { throw 'LDrawLoader: Invalid colour while parsing material' + lineParser.getLineNumberString() + '.'; } break; case 'EDGE': edgeColour = lineParser.getToken(); if ( edgeColour.startsWith( '0x' ) ) { edgeColour = '#' + edgeColour.substring( 2 ); } else if ( ! edgeColour.startsWith( '#' ) ) { // Try to see if edge colour is a colour code edgeMaterial = this.getMaterial( edgeColour ); if ( ! edgeMaterial ) { throw 'LDrawLoader: Invalid edge colour while parsing material' + lineParser.getLineNumberString() + '.'; } // Get the edge material for this triangle material edgeMaterial = edgeMaterial.userData.edgeMaterial; } break; case 'ALPHA': alpha = parseInt( lineParser.getToken() ); if ( isNaN( alpha ) ) { throw 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.'; } alpha = Math.max( 0, Math.min( 1, alpha / 255 ) ); if ( alpha < 1 ) { isTransparent = true; } break; case 'LUMINANCE': luminance = parseInt( lineParser.getToken() ); if ( isNaN( luminance ) ) { throw 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.'; } luminance = Math.max( 0, Math.min( 1, luminance / 255 ) ); break; case 'CHROME': finishType = FINISH_TYPE_CHROME; break; case 'PEARLESCENT': finishType = FINISH_TYPE_PEARLESCENT; break; case 'RUBBER': finishType = FINISH_TYPE_RUBBER; break; case 'MATTE_METALLIC': finishType = FINISH_TYPE_MATTE_METALLIC; break; case 'METAL': finishType = FINISH_TYPE_METAL; break; case 'MATERIAL': // Not implemented lineParser.setToEnd(); break; default: throw 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.'; break; } } let material = null; switch ( finishType ) { case FINISH_TYPE_DEFAULT: material = new MeshStandardMaterial( { color: colour, roughness: 0.3, envMapIntensity: 0.3, metalness: 0 } ); break; case FINISH_TYPE_PEARLESCENT: // Try to imitate pearlescency by setting the specular to the complementary of the color, and low shininess const specular = new Color( colour ); const hsl = specular.getHSL( { h: 0, s: 0, l: 0 } ); hsl.h = ( hsl.h + 0.5 ) % 1; hsl.l = Math.min( 1, hsl.l + ( 1 - hsl.l ) * 0.7 ); specular.setHSL( hsl.h, hsl.s, hsl.l ); material = new MeshPhongMaterial( { color: colour, specular: specular, shininess: 10, reflectivity: 0.3 } ); break; case FINISH_TYPE_CHROME: // Mirror finish surface material = new MeshStandardMaterial( { color: colour, roughness: 0, metalness: 1 } ); break; case FINISH_TYPE_RUBBER: // Rubber finish material = new MeshStandardMaterial( { color: colour, roughness: 0.9, metalness: 0 } ); canHaveEnvMap = false; break; case FINISH_TYPE_MATTE_METALLIC: // Brushed metal finish material = new MeshStandardMaterial( { color: colour, roughness: 0.8, metalness: 0.4 } ); break; case FINISH_TYPE_METAL: // Average metal finish material = new MeshStandardMaterial( { color: colour, roughness: 0.2, metalness: 0.85 } ); break; default: // Should not happen break; } material.transparent = isTransparent; material.premultipliedAlpha = true; material.opacity = alpha; material.depthWrite = ! isTransparent; material.polygonOffset = true; material.polygonOffsetFactor = 1; material.userData.canHaveEnvMap = canHaveEnvMap; if ( luminance !== 0 ) { material.emissive.set( material.color ).multiplyScalar( luminance ); } if ( ! edgeMaterial ) { // This is the material used for edges edgeMaterial = new LineBasicMaterial( { color: edgeColour, transparent: isTransparent, opacity: alpha, depthWrite: ! isTransparent } ); edgeMaterial.userData.code = code; edgeMaterial.name = name + ' - Edge'; edgeMaterial.userData.canHaveEnvMap = false; // This is the material used for conditional edges edgeMaterial.userData.conditionalEdgeMaterial = new ShaderMaterial( { vertexShader: conditionalLineVertShader, fragmentShader: conditionalLineFragShader, uniforms: UniformsUtils.merge( [ UniformsLib.fog, { diffuse: { value: new Color( edgeColour ) }, opacity: { value: alpha } } ] ), fog: true, transparent: isTransparent, depthWrite: ! isTransparent } ); edgeMaterial.userData.conditionalEdgeMaterial.userData.canHaveEnvMap = false; } material.userData.code = code; material.name = name; material.userData.edgeMaterial = edgeMaterial; return material; } // objectParse( text ) { // Retrieve data from the parent parse scope const parentParseScope = this.getParentParseScope(); // Main colour codes passed to this subobject (or default codes 16 and 24 if it is the root object) const mainColourCode = parentParseScope.mainColourCode; const mainEdgeColourCode = parentParseScope.mainEdgeColourCode; const currentParseScope = this.getCurrentParseScope(); // Parse result variables let triangles; let lineSegments; let conditionalSegments; const subobjects = []; let category = null; let keywords = null; if ( text.indexOf( '\r\n' ) !== - 1 ) { // This is faster than String.split with regex that splits on both text = text.replace( /\r\n/g, '\n' ); } const lines = text.split( '\n' ); const numLines = lines.length; let parsingEmbeddedFiles = false; let currentEmbeddedFileName = null; let currentEmbeddedText = null; let bfcCertified = false; let bfcCCW = true; let bfcInverted = false; let bfcCull = true; let type = ''; let startingConstructionStep = false; const scope = this; function parseColourCode( lineParser, forEdge ) { // Parses next colour code and returns a THREE.Material let colourCode = lineParser.getToken(); if ( ! forEdge && colourCode === '16' ) { colourCode = mainColourCode; } if ( forEdge && colourCode === '24' ) { colourCode = mainEdgeColourCode; } const material = scope.getMaterial( colourCode ); if ( ! material ) { throw 'LDrawLoader: Unknown colour code "' + colourCode + '" is used' + lineParser.getLineNumberString() + ' but it was not defined previously.'; } return material; } function parseVector( lp ) { const v = new Vector3( parseFloat( lp.getToken() ), parseFloat( lp.getToken() ), parseFloat( lp.getToken() ) ); if ( ! scope.separateObjects ) { v.applyMatrix4( currentParseScope.currentMatrix ); } return v; } // Parse all line commands for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) { const line = lines[ lineIndex ]; if ( line.length === 0 ) continue; if ( parsingEmbeddedFiles ) { if ( line.startsWith( '0 FILE ' ) ) { // Save previous embedded file in the cache this.subobjectCache[ currentEmbeddedFileName.toLowerCase() ] = currentEmbeddedText; // New embedded text file currentEmbeddedFileName = line.substring( 7 ); currentEmbeddedText = ''; } else { currentEmbeddedText += line + '\n'; } continue; } const lp = new LineParser( line, lineIndex + 1 ); lp.seekNonSpace(); if ( lp.isAtTheEnd() ) { // Empty line continue; } // Parse the line type const lineType = lp.getToken(); let material; let segment; let inverted; let ccw; let doubleSided; let v0, v1, v2, v3, faceNormal; switch ( lineType ) { // Line type 0: Comment or META case '0': // Parse meta directive const meta = lp.getToken(); if ( meta ) { switch ( meta ) { case '!LDRAW_ORG': type = lp.getToken(); currentParseScope.triangles = []; currentParseScope.lineSegments = []; currentParseScope.conditionalSegments = []; currentParseScope.type = type; const isRoot = ! parentParseScope.isFromParse; if ( isRoot || scope.separateObjects && ! isPrimitiveType( type ) ) { currentParseScope.groupObject = new Group(); currentParseScope.groupObject.userData.startingConstructionStep = currentParseScope.startingConstructionStep; } // If the scale of the object is negated then the triangle winding order // needs to be flipped. if ( currentParseScope.matrix.determinant() < 0 && ( scope.separateObjects && isPrimitiveType( type ) || ! scope.separateObjects ) ) { currentParseScope.inverted = ! currentParseScope.inverted; } triangles = currentParseScope.triangles; lineSegments = currentParseScope.lineSegments; conditionalSegments = currentParseScope.conditionalSegments; break; case '!COLOUR': material = this.parseColourMetaDirective( lp ); if ( material ) { this.addMaterial( material ); } else { console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() ); } break; case '!CATEGORY': category = lp.getToken(); break; case '!KEYWORDS': const newKeywords = lp.getRemainingString().split( ',' ); if ( newKeywords.length > 0 ) { if ( ! keywords ) { keywords = []; } newKeywords.forEach( function ( keyword ) { keywords.push( keyword.trim() ); } ); } break; case 'FILE': if ( lineIndex > 0 ) { // Start embedded text files parsing parsingEmbeddedFiles = true; currentEmbeddedFileName = lp.getRemainingString(); currentEmbeddedText = ''; bfcCertified = false; bfcCCW = true; } break; case 'BFC': // Changes to the backface culling state while ( ! lp.isAtTheEnd() ) { const token = lp.getToken(); switch ( token ) { case 'CERTIFY': case 'NOCERTIFY': bfcCertified = token === 'CERTIFY'; bfcCCW = true; break; case 'CW': case 'CCW': bfcCCW = token === 'CCW'; break; case 'INVERTNEXT': bfcInverted = true; break; case 'CLIP': case 'NOCLIP': bfcCull = token === 'CLIP'; break; default: console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' ); break; } } break; case 'STEP': startingConstructionStep = true; break; default: // Other meta directives are not implemented break; } } break; // Line type 1: Sub-object file case '1': material = parseColourCode( lp ); const posX = parseFloat( lp.getToken() ); const posY = parseFloat( lp.getToken() ); const posZ = parseFloat( lp.getToken() ); const m0 = parseFloat( lp.getToken() ); const m1 = parseFloat( lp.getToken() ); const m2 = parseFloat( lp.getToken() ); const m3 = parseFloat( lp.getToken() ); const m4 = parseFloat( lp.getToken() ); const m5 = parseFloat( lp.getToken() ); const m6 = parseFloat( lp.getToken() ); const m7 = parseFloat( lp.getToken() ); const m8 = parseFloat( lp.getToken() ); const matrix = new Matrix4().set( m0, m1, m2, posX, m3, m4, m5, posY, m6, m7, m8, posZ, 0, 0, 0, 1 ); let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' ); if ( scope.fileMap[ fileName ] ) { // Found the subobject path in the preloaded file path map fileName = scope.fileMap[ fileName ]; } else { // Standardized subfolders if ( fileName.startsWith( 's/' ) ) { fileName = 'parts/' + fileName; } else if ( fileName.startsWith( '48/' ) ) { fileName = 'p/' + fileName; } } subobjects.push( { material: material, matrix: matrix, fileName: fileName, originalFileName: fileName, locationState: FILE_LOCATION_AS_IS, url: null, triedLowerCase: false, inverted: bfcInverted !== currentParseScope.inverted, startingConstructionStep: startingConstructionStep } ); bfcInverted = false; break; // Line type 2: Line segment case '2': material = parseColourCode( lp, true ); segment = { material: material.userData.edgeMaterial, colourCode: material.userData.code, v0: parseVector( lp ), v1: parseVector( lp ) }; lineSegments.push( segment ); break; // Line type 5: Conditional Line segment case '5': material = parseColourCode( lp, true ); segment = { material: material.userData.edgeMaterial.userData.conditionalEdgeMaterial, colourCode: material.userData.code, v0: parseVector( lp ), v1: parseVector( lp ), c0: parseVector( lp ), c1: parseVector( lp ) }; conditionalSegments.push( segment ); break; // Line type 3: Triangle case '3': material = parseColourCode( lp ); inverted = currentParseScope.inverted; ccw = bfcCCW !== inverted; doubleSided = ! bfcCertified || ! bfcCull; if ( ccw === true ) { v0 = parseVector( lp ); v1 = parseVector( lp ); v2 = parseVector( lp ); } else { v2 = parseVector( lp ); v1 = parseVector( lp ); v0 = parseVector( lp ); } _tempVec0.subVectors( v1, v0 ); _tempVec1.subVectors( v2, v1 ); faceNormal = new Vector3() .crossVectors( _tempVec0, _tempVec1 ) .normalize(); triangles.push( { material: material, colourCode: material.userData.code, v0: v0, v1: v1, v2: v2, faceNormal: faceNormal, n0: null, n1: null, n2: null } ); if ( doubleSided === true ) { triangles.push( { material: material, colourCode: material.userData.code, v0: v0, v1: v2, v2: v1, faceNormal: faceNormal, n0: null, n1: null, n2: null } ); } break; // Line type 4: Quadrilateral case '4': material = parseColourCode( lp ); inverted = currentParseScope.inverted; ccw = bfcCCW !== inverted; doubleSided = ! bfcCertified || ! bfcCull; if ( ccw === true ) { v0 = parseVector( lp ); v1 = parseVector( lp ); v2 = parseVector( lp ); v3 = parseVector( lp ); } else { v3 = parseVector( lp ); v2 = parseVector( lp ); v1 = parseVector( lp ); v0 = parseVector( lp ); } _tempVec0.subVectors( v1, v0 ); _tempVec1.subVectors( v2, v1 ); faceNormal = new Vector3() .crossVectors( _tempVec0, _tempVec1 ) .normalize(); triangles.push( { material: material, colourCode: material.userData.code, v0: v0, v1: v1, v2: v2, faceNormal: faceNormal, n0: null, n1: null, n2: null } ); triangles.push( { material: material, colourCode: material.userData.code, v0: v0, v1: v2, v2: v3, faceNormal: faceNormal, n0: null, n1: null, n2: null } ); if ( doubleSided === true ) { triangles.push( { material: material, colourCode: material.userData.code, v0: v0, v1: v2, v2: v1, faceNormal: faceNormal, n0: null, n1: null, n2: null } ); triangles.push( { material: material, colourCode: material.userData.code, v0: v0, v1: v3, v2: v2, faceNormal: faceNormal, n0: null, n1: null, n2: null } ); } break; default: throw 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.'; break; } } if ( parsingEmbeddedFiles ) { this.subobjectCache[ currentEmbeddedFileName.toLowerCase() ] = currentEmbeddedText; } currentParseScope.category = category; currentParseScope.keywords = keywords; currentParseScope.subobjects = subobjects; currentParseScope.numSubobjects = subobjects.length; currentParseScope.subobjectIndex = 0; } computeConstructionSteps( model ) { // Sets userdata.constructionStep number in Group objects and userData.numConstructionSteps number in the root Group object. let stepNumber = 0; model.traverse( c => { if ( c.isGroup ) { if ( c.userData.startingConstructionStep ) { stepNumber ++; } c.userData.constructionStep = stepNumber; } } ); model.userData.numConstructionSteps = stepNumber + 1; } processObject( text, onProcessed, subobject, url ) { const scope = this; const parseScope = scope.newParseScopeLevel(); parseScope.url = url; const parentParseScope = scope.getParentParseScope(); // Set current matrix if ( subobject ) { parseScope.currentMatrix.multiplyMatrices( parentParseScope.currentMatrix, subobject.matrix ); parseScope.matrix.copy( subobject.matrix ); parseScope.inverted = subobject.inverted; parseScope.startingConstructionStep = subobject.startingConstructionStep; } // Add to cache let currentFileName = parentParseScope.currentFileName; if ( currentFileName !== null ) { currentFileName = parentParseScope.currentFileName.toLowerCase(); } if ( scope.subobjectCache[ currentFileName ] === undefined ) { scope.subobjectCache[ currentFileName ] = text; } // Parse the object (returns a Group) scope.objectParse( text ); let finishedCount = 0; onSubobjectFinish(); function onSubobjectFinish() { finishedCount ++; if ( finishedCount === parseScope.subobjects.length + 1 ) { finalizeObject(); } else { // Once the previous subobject has finished we can start processing the next one in the list. // The subobject processing shares scope in processing so it's important that they be loaded serially // to avoid race conditions. // Promise.resolve is used as an approach to asynchronously schedule a task _before_ this frame ends to // avoid stack overflow exceptions when loading many subobjects from the cache. RequestAnimationFrame // will work but causes the load to happen after the next frame which causes the load to take significantly longer. const subobject = parseScope.subobjects[ parseScope.subobjectIndex ]; Promise.resolve().then( function () { loadSubobject( subobject ); } ); parseScope.subobjectIndex ++; } } function finalizeObject() { if ( scope.smoothNormals && parseScope.type === 'Part' ) { smoothNormals( parseScope.triangles, parseScope.lineSegments ); } const isRoot = ! parentParseScope.isFromParse; if ( scope.separateObjects && ! isPrimitiveType( parseScope.type ) || isRoot ) { const objGroup = parseScope.groupObject; if ( parseScope.triangles.length > 0 ) { objGroup.add( createObject( parseScope.triangles, 3 ) ); } if ( parseScope.lineSegments.length > 0 ) { objGroup.add( createObject( parseScope.lineSegments, 2 ) ); } if ( parseScope.conditionalSegments.length > 0 ) { objGroup.add( createObject( parseScope.conditionalSegments, 2, true ) ); } if ( parentParseScope.groupObject ) { objGroup.name = parseScope.fileName; objGroup.userData.category = parseScope.category; objGroup.userData.keywords = parseScope.keywords; parseScope.matrix.decompose( objGroup.position, objGroup.quaternion, objGroup.scale ); parentParseScope.groupObject.add( objGroup ); } } else { const separateObjects = scope.separateObjects; const parentLineSegments = parentParseScope.lineSegments; const parentConditionalSegments = parentParseScope.conditionalSegments; const parentTriangles = parentParseScope.triangles; const lineSegments = parseScope.lineSegments; const conditionalSegments = parseScope.conditionalSegments; const triangles = parseScope.triangles; for ( let i = 0, l = lineSegments.length; i < l; i ++ ) { const ls = lineSegments[ i ]; if ( separateObjects ) { ls.v0.applyMatrix4( parseScope.matrix ); ls.v1.applyMatrix4( parseScope.matrix ); } parentLineSegments.push( ls ); } for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) { const os = conditionalSegments[ i ]; if ( separateObjects ) { os.v0.applyMatrix4( parseScope.matrix ); os.v1.applyMatrix4( parseScope.matrix ); os.c0.applyMatrix4( parseScope.matrix ); os.c1.applyMatrix4( parseScope.matrix ); } parentConditionalSegments.push( os ); } for ( let i = 0, l = triangles.length; i < l; i ++ ) { const tri = triangles[ i ]; if ( separateObjects ) { tri.v0 = tri.v0.clone().applyMatrix4( parseScope.matrix ); tri.v1 = tri.v1.clone().applyMatrix4( parseScope.matrix ); tri.v2 = tri.v2.clone().applyMatrix4( parseScope.matrix ); _tempVec0.subVectors( tri.v1, tri.v0 ); _tempVec1.subVectors( tri.v2, tri.v1 ); tri.faceNormal.crossVectors( _tempVec0, _tempVec1 ).normalize(); } parentTriangles.push( tri ); } } scope.removeScopeLevel(); // If it is root object, compute construction steps if ( ! parentParseScope.isFromParse ) { scope.computeConstructionSteps( parseScope.groupObject ); } if ( onProcessed ) { onProcessed( parseScope.groupObject ); } } function loadSubobject( subobject ) { parseScope.mainColourCode = subobject.material.userData.code; parseScope.mainEdgeColourCode = subobject.material.userData.edgeMaterial.userData.code; parseScope.currentFileName = subobject.originalFileName; // If subobject was cached previously, use the cached one const cached = scope.subobjectCache[ subobject.originalFileName.toLowerCase() ]; if ( cached ) { scope.processObject( cached, function ( subobjectGroup ) { onSubobjectLoaded( subobjectGroup, subobject ); onSubobjectFinish(); }, subobject, url ); return; } // Adjust file name to locate the subobject file path in standard locations (always under directory scope.path) // Update also subobject.locationState for the next try if this load fails. let subobjectURL = subobject.fileName; let newLocationState = FILE_LOCATION_NOT_FOUND; switch ( subobject.locationState ) { case FILE_LOCATION_AS_IS: newLocationState = subobject.locationState + 1; break; case FILE_LOCATION_TRY_PARTS: subobjectURL = 'parts/' + subobjectURL; newLocationState = subobject.locationState + 1; break; case FILE_LOCATION_TRY_P: subobjectURL = 'p/' + subobjectURL; newLocationState = subobject.locationState + 1; break; case FILE_LOCATION_TRY_MODELS: subobjectURL = 'models/' + subobjectURL; newLocationState = subobject.locationState + 1; break; case FILE_LOCATION_TRY_RELATIVE: subobjectURL = url.substring( 0, url.lastIndexOf( '/' ) + 1 ) + subobjectURL; newLocationState = subobject.locationState + 1; break; case FILE_LOCATION_TRY_ABSOLUTE: if ( subobject.triedLowerCase ) { // Try absolute path newLocationState = FILE_LOCATION_NOT_FOUND; } else { // Next attempt is lower case subobject.fileName = subobject.fileName.toLowerCase(); subobjectURL = subobject.fileName; subobject.triedLowerCase = true; newLocationState = FILE_LOCATION_AS_IS; } break; case FILE_LOCATION_NOT_FOUND: // All location possibilities have been tried, give up loading this object console.warn( 'LDrawLoader: Subobject "' + subobject.originalFileName + '" could not be found.' ); return; } subobject.locationState = newLocationState; subobject.url = subobjectURL; // Load the subobject // Use another file loader here so we can keep track of the subobject information // and use it when processing the next model. const fileLoader = new FileLoader( scope.manager ); fileLoader.setPath( scope.path ); fileLoader.setRequestHeader( scope.requestHeader ); fileLoader.setWithCredentials( scope.withCredentials ); fileLoader.load( subobjectURL, function ( text ) { scope.processObject( text, function ( subobjectGroup ) { onSubobjectLoaded( subobjectGroup, subobject ); onSubobjectFinish(); }, subobject, url ); }, undefined, function ( err ) { onSubobjectError( err, subobject ); }, subobject ); } function onSubobjectLoaded( subobjectGroup, subobject ) { if ( subobjectGroup === null ) { // Try to reload loadSubobject( subobject ); return; } scope.fileMap[ subobject.originalFileName ] = subobject.url; } function onSubobjectError( err, subobject ) { // Retry download from a different default possible location loadSubobject( subobject ); } } } export { LDrawLoader };